This paper proposes an end-to-end deep learning approach for removing defocus blur from a single defocused image. Defocus blur is a common issue in digital photography that poses a challenge due to its spatially-varying and large blurring effect. The proposed approach addresses this challenge by employing a pixel-wise Gaussian kernel mixture (GKM) model to accurately yet compactly parameterize spatially-varying defocus point spread functions (PSFs), which is motivated by the isotropy in defocus PSFs. We further propose a grouped GKM (GGKM) model that decouples the coefficients in GKM, so as to improve the modeling accuracy with an economic manner. Afterward, a deep neural network called GGKMNet is then developed by unrolling a fixed-point iteration process of GGKM-based image deblurring, which avoids the efficiency issues in existing unrolling DNNs. Using a lightweight scale-recurrent architecture with a coarse-to-fine estimation scheme to predict the coefficients in GGKM, the GGKMNet can efficiently recover an all-in-focus image from a defocused one. Such advantages are demonstrated with extensive experiments on five benchmark datasets, where the GGKMNet outperforms existing defocus deblurring methods in restoration quality, as well as showing advantages in terms of model complexity and computational efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TPAMI.2024.3457856DOI Listing

Publication Analysis

Top Keywords

image defocus
8
defocus deblurring
8
gaussian kernel
8
kernel mixture
8
defocus blur
8
defocus
6
deep single
4
image
4
single image
4
deblurring gaussian
4

Similar Publications

Inducing cylindrical and spherical defocus after implantation with new generation intraocular lenses improves intermediate and near visual acuity.

Sci Rep

December 2024

Imaging, Biomechanics and Mathematical Modelling Solutions Lab, Narayana Nethralaya Foundation, Bangalore, India.

An induced cylinder and spherical power after implantation with an extended depth of focus (EDOF) and enhanced monofocal intraocular lens (IOL) could improve distance, intermediate (60 cm) and near (40 cm) visual acuity (VA). In this prospective study, forty eyes with Eyhance EDOF IOL (Johnson and Johnson, USA) and 40 eyes with Vivity EDOF IOL (Alcon Laboratories Inc. USA) were included.

View Article and Find Full Text PDF

Purpose: Visual acuity (VA) is a primary outcome measure that defines the success of clinical interventions for retinal diseases such as age-related macular degeneration (AMD) or diabetic macular oedema (DME). These conditions can lead to the presence of subretinal fluid, causing substantial photoreceptor layer elevation. Hyperopic defocus then occurs, affecting the VA measurements.

View Article and Find Full Text PDF

Images taken by transmission electron microscopes are usually affected by lens aberrations and image defocus, among other factors. These distortions can be modeled in reciprocal space using the contrast transfer function (CTF). Accurate estimation and correction of the CTF is essential for restoring the high-resolution signal in cryogenic electron microscopy (cryoEM).

View Article and Find Full Text PDF

Background: Thus far, considerable research has been focused on classifying a lesion as benign or malignant. However, there is a requirement for quick depth estimation of a lesion for the accurate clinical staging of the lesion. The lesion could be malignant and quickly grow beneath the skin.

View Article and Find Full Text PDF

On the influence of artificially distorted images in firearm detection performance using deep learning.

PeerJ Comput Sci

October 2024

Department of Computer Science and Statistics, Universidad Rey Juan Carlos, Mostoles, Madrid, Spain.

Detecting people carrying firearms in outdoor or indoor scenes usually identifies (or avoids) potentially dangerous situations. Nevertheless, the automatic detection of these weapons can be greatly affected by the scene conditions. Commonly, in real scenes these firearms can be seen from different perspectives.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!