Previous research has shown that integrating haptic feedback can improve immersion and realism in automotive VR applications. However, current haptic feedback approaches primarily focus on a single feedback type. This means users must switch between devices to experience haptic stimuli for different feedback types, such as grabbing, collision, or weight simulation. This restriction limits the ability to simulate haptics realistically for complex tasks such as maintenance. To address this issue, we evaluated existing feedback devices based on our requirements analysis to determine which devices are most suitable for simulating these three feedback types. Since no suitable haptic feedback system can simulate all three feedback types simultaneously, we evaluated which devices can be combined. Based on that, we devised a new multi-type haptic feedback system combining three haptic feedback devices. We evaluated the system with different feedback-type combinations through a qualitative expert study involving twelve automotive VR experts. The results showed that combining weight and collision feedback yielded the best and most realistic experience. The study also highlighted technical limitations in current grabbing devices. Our findings provide insights into the effectiveness of haptic device combinations and practical boundaries for automotive virtual reality tasks.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TVCG.2024.3456203DOI Listing

Publication Analysis

Top Keywords

haptic feedback
24
feedback
12
feedback types
12
haptic
8
multi-type haptic
8
automotive virtual
8
virtual reality
8
reality tasks
8
feedback devices
8
three feedback
8

Similar Publications

Background: Correct identification of the epidural space requires extensive training for technical proficiency. This study explores a novel bimanual haptic simulator designed for the precise insertion of an epidural needle based on loss-of-resistance (LOR) detection, providing realistic dual-hand force feedback.

Methods: The simulator, equipped with two haptic devices connected to a Tuohy needle and an LOR syringe, was designed to simulate the tissues' resistive forces felt by the user during the procedure, offer anatomical variability and record detailed performance metrics for personalized feedback.

View Article and Find Full Text PDF

Objective: Mixed-reality (MR) applications provide opportunities for technical rehearsal, education, and estimation of surgical performance without the risk of patient harm. In this study, the authors provide a structured literature review on the current state of MR applications and their effects on neurosurgery training. They also introduce an MR prototype for neurosurgical spine training.

View Article and Find Full Text PDF

Implementation Strategies and Ergonomic Factors in Robot-assisted Microsurgery.

J Robot Surg

January 2025

BG Trauma Center Ludwigshafen, Department for Plastic, Hand and Reconstructive Surgery, Department of Plastic Surgery for the Heidelberg University, Ludwig-Guttmann-Straße 13, 67071, Ludwigshafen, Germany.

Robot-assisted surgery represents a significant innovation in reconstructive microsurgery, providing enhanced precision and reduced surgeon fatigue. This study examines the integration of robotic assistance in a series of 85 consecutive robot-assisted microsurgical (RAMS) operations. It aims to evaluate changes in the integration of RAMS during the implementation phase in a single institution.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers explored how visual feedback on interaction forces enhances the performance of haptic-assisted teleoperation for robotic arms in industrial tasks.
  • They developed a new method for providing visual cues in a virtual environment and evaluated it alongside a head-mounted display during experiments focused on dross removal.
  • Results demonstrated that both methods improved task performance, with visual cues enhancing safety and the head-mounted display significantly boosting overall performance, leading to higher user acceptance of both approaches.
View Article and Find Full Text PDF

Background: New surgeons experience heavy workload during robot-assisted surgery partially because they must use vision to compensate for the lack of haptic feedback. We hypothesize that providing realistic haptic feedback during dry-lab simulation training may accelerate learning and reduce workload during subsequent surgery on patients.

Methods: We conducted a single-blinded study with 12 general surgery residents (third and seventh post-graduate year, PGY) randomized into haptic and control groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!