A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Classification of Internal and External Distractions in an Educational VR Environment Using Multimodal Features. | LitMetric

Virtual reality (VR) can potentially enhance student engagement and memory retention in the classroom. However, distraction among participants in a VR-based classroom is a significant concern. Several factors, including mind wandering, external noise, stress, etc., can cause students to become internally and/or externally distracted while learning. To detect distractions, single or multi-modal features can be used. A single modality is found to be insufficient to detect both internal and external distractions, mainly because of individual variability. In this work, we investigated multi-modal features: eye tracking and EEG data, to classify the internal and external distractions in an educational VR environment. We set up our educational VR environment and equipped it for multi-modal data collection. We implemented different machine learning (ML) methods, including k-nearest-neighbors (kNN), Random Forest (RF), one-dimensional convolutional neural network - long short-term memory (1 D-CNN-LSTM), and two-dimensional convolutional neural networks (2D-CNN) to classify participants' internal and external distraction states using the multi-modal features. We performed cross-subject, cross-session, and gender-based grouping tests to evaluate our models. We found that the RF classifier achieves the highest accuracy over 83% in the cross-subject test, around 68% to 78% in the cross-session test, and around 90% in the gender-based grouping test compared to other models. SHAP analysis of the extracted features illustrated greater contributions from the occipital and prefrontal regions of the brain, as well as gaze angle, gaze origin, and head rotation features from the eye tracking data.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TVCG.2024.3456207DOI Listing

Publication Analysis

Top Keywords

internal external
16
external distractions
12
educational environment
12
multi-modal features
12
distractions educational
8
features eye
8
eye tracking
8
convolutional neural
8
gender-based grouping
8
features
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!