Memory representations during slow change blindness.

J Vis

Department of Psychology, Michigan State University, East Lansing, MI, USA.

Published: September 2024

Classic change blindness is the phenomenon where seemingly obvious changes that coincide with visual disruptions (such as blinks or brief blanks) go unnoticed by an attentive observer. Some early work into the causes of classic change blindness suggested that any pre-change stimulus representation is overwritten by a representation of the altered post-change stimulus, preventing change detection. However, recent work revealed that, even when observers do maintain memory representations of both the pre- and post-change stimulus states, they can still miss the change, suggesting that change blindness can also arise from a failure to compare the stored representations. Here, we studied slow change blindness, a related phenomenon that occurs even in the absence of visual disruptions when the change occurs sufficiently slowly, to determine whether it could be explained by conclusions from classic change blindness. Across three different slow change blindness experiments we found that observers who consistently failed to notice the change had access to at least two memory representations of the changing display. One representation was precise but short lived: a detailed representation of the more recent stimulus states, but fragile. The other representation lasted longer but was fairly general: stable but too coarse to differentiate the various stages of the change. These findings suggest that, although multiple representations are formed, the failure to compare hypotheses might not explain slow change blindness; even if a comparison were made, the representations would be too sparse (longer term stores) or too fragile (short-lived stores) for such comparison to inform about the change.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11401121PMC
http://dx.doi.org/10.1167/jov.24.9.8DOI Listing

Publication Analysis

Top Keywords

change blindness
32
slow change
16
change
14
memory representations
12
classic change
12
blindness
8
blindness phenomenon
8
visual disruptions
8
post-change stimulus
8
stimulus states
8

Similar Publications

Age-related cataract (ARC) remains the leading cause of blindness worldwide. Sagittaria sagittifolia polysaccharide (SSP) extract, a key component of Sagittaria sagittifolia L., exhibits anti-oxidant and anti-apoptotic effects with potential applications in ARC.

View Article and Find Full Text PDF

: This study aimed to evaluate the location of retinal fractal dimension (FD) abnormalities in individuals with diabetes mellitus (DM) and hypertension (HTN) without retinopathy. The annular zone of 6 mm × 6 mm OCTA images centered on the fovea was partitioned into thin annuli and analyzed using fractal analysis to measure FDs. The cohort ( = 114) had an average age of 55.

View Article and Find Full Text PDF

: Diabetic retinopathy (DR) is a common diabetes complication and a leading cause of blindness. Although bariatric surgery (BS) is well studied for diabetes management, its effects on DR onset and progression, particularly long-term outcomes, remain underexplored. This review seeks to evaluate the short- and long-term retinal outcomes of BS in diabetic patients.

View Article and Find Full Text PDF

Introduction: Glaucoma is a leading cause of blindness, often progressing asymptomatically until significant vision loss occurs. Early detection is crucial for preventing irreversible damage. The pupillary light reflex (PLR) has proven useful in glaucoma diagnosis, and mobile technologies like the AI-based smartphone pupillometer (AI Pupillometer) offer a promising solution for accessible screening.

View Article and Find Full Text PDF

Aim: To evaluate the impact of fluid volume fluctuations quantified with artificial intelligence in optical coherence tomography scans during the maintenance phase and visual outcomes at 12 and 24 months in a real-world, multicentre, national cohort of treatment-naïve neovascular age-related macular degeneration (nAMD) eyes.

Methods: Demographics, visual acuity (VA) and number of injections were collected using the Fight Retinal Blindness tool. Intraretinal fluid (IRF), subretinal fluid (SRF), pigment epithelial detachment (PED), total fluid (TF) and central subfield thickness (CST) were quantified using the RetinAI Discovery tool.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!