We present a dynamic density functional theory for modeling the effects of applied electric fields on the local structure of polymers with added salt (polymer electrolytes). Time-dependent equations for the local electrostatic potential and volume fractions of polymer, cation, and anion of added salt are developed using the principles of linear irreversible thermodynamics. For such a development, a field theoretic description of the free energy of polymer melts doped with salts is used, which captures the effects of local variations in the dielectric function. Connections of the dynamic density functional theory with experiments are established by relating the three phenomenological Onsager's transport coefficients of the theory to the mutual diffusion of electrolyte, ionic conductivity, and transference number of one of the ions. The theory is connected with a statistical mechanical model developed by Bearman and Kirkwood [J. Chem. Phys. 28, 136 (1958)] after relating the three transport coefficients to friction coefficients. The steady-state limit of the dynamic density functional theory is used to understand the effects of dielectric inhomogeneity on the phase separation in polymer electrolytes. The theory developed here provides not only a way to connect with experiments but also to develop multi-scale models for studying connections between local structure and ion transport in polymer electrolytes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0222997 | DOI Listing |
Langmuir
January 2025
Department of Physics, K. N. Toosi University of Technology, Tehran 19697, Iran.
One of the successful techniques developed for the inhibition of metal corrosion is the utilization of phytochemicals from plant extracts as corrosion inhibitors. Theoretical studies are utilized to predict how organic components behave on metal surfaces and can pave the way for the development and synthesis of innovative, efficient corrosion inhibitors. However, atomic-level insights into the inhibition mechanisms of these green components are still needed.
View Article and Find Full Text PDFNeuroscience
January 2025
Laboratory of Epileptogenesis, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St, 02-093 Warsaw, Poland. Electronic address:
Our previous in silico data indicated an overrepresentation of the ZF5 motif in the promoters of genes in which circadian oscillations are altered in the ventral hippocampus in the pilocarpine model of temporal lobe epilepsy in mice. In this study, we test the hypothesis that the Zbtb14 protein oscillates in the hippocampus in a diurnal manner and that this oscillation is disrupted by epilepsy. We found that Zbtb14 immunostaining is present in the cytoplasm and cell nuclei.
View Article and Find Full Text PDFKlin Monbl Augenheilkd
January 2025
Ophthalmology Department, University Hospital Basel, Switzerland.
Background: Loss of corneal endothelial cells after glaucoma surgery can lead to corneal decompensation and reduced vision. This loss may be accelerated by drainage implants like PreserFlo, which allow controlled subconjunctival filtration. In a retrospective analysis, we examined its impact on corneal endothelial cell density (ECD).
View Article and Find Full Text PDFBiomed Phys Eng Express
January 2025
Children's Hospital of Eastern Switzerland, Claudiusstrasse 6, St.Gallen, 9006, SWITZERLAND.
Mapping the myomagnetic field of a straight and easily accessible muscle after electrical stimulation using triaxial optically pumped magnetometers (OPMs) to assess potential benefits for magnetomyography (MMG). Approach: Six triaxial OPMs were arranged in two rows with three sensors each along the abductor digiti minimi (ADM) muscle. The upper row of sensors was inclined by 45° with respect to the lower row and all sensors were aligned closely to the skin surface without direct contact.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Swansea Lab for Animal Movement, Biosciences, College of Science, Swansea University, Swansea, Wales SA2 8PP, United Kingdom.
Large herbivores are in decline in much of the world, including sub-Saharan Africa, and true apex carnivores like the lion () decline in parallel with their prey. As a consequence, competitively subordinate carnivores like the African wild dog () are simultaneously experiencing a costly reduction in resources and a beneficial reduction in dominant competitors. The net effect is not intuitively obvious, but wild dogs' density, survival, and reproduction are all low in areas that are strongly affected by prey depletion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!