REV-ERBα Mitigates Astrocyte Activation and Protects Dopaminergic Neurons from Damage.

J Mol Neurosci

Suzhou Research Center of Medical School, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, 215153, China.

Published: September 2024

AI Article Synopsis

  • Parkinson's disease (PD) involves astrocyte activation and circadian rhythm disruption, with two reactive astrocyte states: A1 (neurotoxic) and A2 (neuroprotective).
  • REV-ERBα, a regulator of the circadian clock, is found to be significantly downregulated in A1 astrocytes, and its activation can convert A1 astrocytes into A2.
  • Inhibition of REV-ERBα is linked to inflammation and dopaminergic neuron death, while its activation reduces astrocyte activation and neuron damage by 50%, highlighting its importance in PD progression.

Article Abstract

Parkinson's disease (PD) is characterized by astrocyte activation and disruptions in circadian rhythm. Within the astrocyte population, two distinct reactive states exist: A1 and A2. A1 astrocytes are associated with neurotoxicity and inflammation, while A2 astrocytes exhibit neuroprotective functions. Our investigation focused on the role of REV-ERBα, a member of the nuclear receptor superfamily and a key regulator of the circadian clock, in astrocyte activation. We observed that REV-ERBα expression in A1 astrocytes was reduced to one-third of its normal level. Notably, activation of REV-ERBα prompted a transformation of astrocytes from A1 to A2. Mechanistically, REV-ERBα inhibition was linked to the classical NF-κB pathway, while it concurrently suppressed the STAT3 pathway. Furthermore, astrocytes with low REV-ERBα expression were associated with dopaminergic neurons apoptosis. Intriguingly, the opposite effect was observed when using a REV-ERBα agonist, which mitigated astrocyte activation and reduced dopaminergic neuron damage by 50%. In summary, our study elucidates the pivotal role of REV-ERBα in modulating astrocyte function and its potential implications in PD pathogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12031-024-02264-wDOI Listing

Publication Analysis

Top Keywords

astrocyte activation
16
rev-erbα
8
dopaminergic neurons
8
role rev-erbα
8
observed rev-erbα
8
rev-erbα expression
8
astrocyte
6
activation
5
astrocytes
5
rev-erbα mitigates
4

Similar Publications

Octadecaneuropeptide promotes the migration of astrocyte via ODN metabotropic receptor and calcium signaling pathway.

Peptides

January 2025

University of Tunis El Manar, Faculty of Sciences of Tunis, LR18ES03 Laboratory of Neurophysiology, Cellular Physiopathology and Biomolecules Valorisation. 2092 Tunis, Tunisia.

Migration is an essential characteristic of cells that occurs during many physiological and pathological processes. Astrocytes represent the most abundant cell type in the adult central nervous system (CNS), that play a crucial role in various functions such as guiding and supporting neuronal migration during development and maintaining brain homeostasis at adulthood. Astrocytes specifically synthesize and release endozepines, a family of regulatory peptides, including the octadecaneuropeptide (ODN).

View Article and Find Full Text PDF

Challenges of Investigating Compartmentalized Brain Energy Metabolism Using Nuclear Magnetic Resonance Spectroscopy in vivo.

Neurochem Res

January 2025

Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.

Brain function requires continuous energy supply. Thus, unraveling brain metabolic regulation is critical not only for our basic understanding of overall brain function, but also for the cellular basis of functional neuroimaging techniques. While it is known that brain energy metabolism is exquisitely compartmentalized between astrocytes and neurons, the metabolic and neuro-energetic basis of brain activity is far from fully understood.

View Article and Find Full Text PDF

Astrocytes participate in brain clearance of extracellular proteins and metabolites, through the activity of the water channel aquaporin-4 (AQP4), which can be deregulated in stress-related disorders, impairing brain waste clearance. The present study investigates the impact of dexamethasone (Dexa), a synthetic glucocorticoid used as a simplified in vitro stress model, on astrocytic AQP4 and its modulation by adenosine A receptors (AR), which blockade reverses conditions related with maladaptive stress, such as anxiety and depression. The clearance of proteins in primary astrocytic cultures, assessed using 5 kDa FITC-dextran and 45 kDa TRITC-dextran uptake, was decreased by a 24 h exposure to 100 nM Dexa.

View Article and Find Full Text PDF

Semaglutide restores astrocyte-vascular interactions and blood-brain barrier integrity in a model of diet-induced metabolic syndrome.

Diabetol Metab Syndr

January 2025

Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation-Fiocruz, Campus Maré. Centro de Pesquisa, Inovação e Vigilância em Covid-19 e Emergências Sanitárias. Endereço: Av. Brasil, 4036-Bloco 2. Manguinhos, Rio de Janeiro, RJ, CEP 21040-361, Brazil.

Introduction: Metabolic syndrome (MetS) is a metabolic disorder related to obesity and insulin resistance and is the primary determinant of the development of low-intensity chronic inflammation. This continuous inflammatory response culminates in neuroimmune-endocrine dysregulation responsible for the metabolic abnormalities and morbidities observed in individuals with MetS. Events such as the accumulation of visceral adipose tissue, increased plasma concentrations of free fatty acids, tissue hypoxia, and sympathetic hyperactivity in individuals with MetS may contribute to the activation of the innate immune response, which compromises cerebral microcirculation and the neurovascular unit, leading to the onset or progression of neurodegenerative diseases.

View Article and Find Full Text PDF

Maternal phthalates exposure promotes neural stem cell differentiation into phagocytic astrocytes and synapse engulfment via IRE1α/XBP1s pathway.

Cell Rep

January 2025

Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200031, China. Electronic address:

Humans are widely exposed to phthalates, a common chemical plasticizer. Previous cohort studies have revealed that maternal exposure to monobutyl phthalate (MBP), a key metabolite of phthalates, is associated with neurodevelopmental defects. However, the molecular mechanism remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!