was recently identified as the major species in corn and soybean fields in Nebraska and was shown to be pathogenic on corn and soybean seedlings. Fungicide seed treatments commonly used to manage seedling diseases include prothioconazole (demethylation inhibitor), fludioxonil (phenylpyrrole), sedaxane (succinate dehydrogenase inhibitor), and azoxystrobin (quinone outside inhibitor; QoI). To establish the sensitivity of to these fungicides, we isolated this pathogen from corn and soybean fields in Nebraska during 2015 to 2017 and estimated the relative effective concentration for 50% inhibition (EC) of a total of 91 isolates from Nebraska and Illinois. Average EC for prothioconazole, fludioxonil, sedaxane, and azoxystrobin was 0.219, 0.099, 0.078, and > 100 µgml, respectively. assays showed that azoxystrobin did not significantly reduce the disease severity on soybean ( > 0.05). The cytochrome gene of did not harbor any mutation known to confer QoI resistance and had a type-I intron directly after codon 143 suggesting that a G143A mutation is unlikely to evolve in this pathogen. For prothioconazole, fludioxonil, and sedaxane, EC of isolates did not differ significantly among years of collection ( > 0.05) and their single discriminatory concentrations were identified as 0.1 µgml. This is the first study to establish non-target site resistance of to azoxystrobin and the sensitivity of to commonly used seed treatment fungicides in Nebraska. This information will help to guide strategies for chemical control of and monitor sensitivity shifts in future.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PDIS-02-24-0352-REDOI Listing

Publication Analysis

Top Keywords

corn soybean
16
soybean fields
12
fields nebraska
12
non-target site
8
site resistance
8
prothioconazole fludioxonil
8
fludioxonil sedaxane
8
soybean
5
nebraska
5
fungicide sensitivity
4

Similar Publications

Atrazine and S-metolachlor are herbicides widely used on corn and soybean crops where they are sometimes found in concentrations of concern in nearby aquatic ecosystems, potentially affecting autotrophic organisms. The aim of this study was to investigate the response of the green algae Enallax costatus, the diatom Gomphonema parvulum and a culture of the cyanobacteria Phormidium sp. and Microcystis aeruginosa, to atrazine and S-metolachlor alone and in mixture (0, 10, 100 and 1000 µg.

View Article and Find Full Text PDF

The number of genetically modified (GMO) events for canola, corn, and soybean is steadily increasing. Some countries, including those in the EU, have regulatory requirements for the approval and use of plant ingredients containing GMOs. Multiplex digital PCR (dPCR) has been used for the simultaneous detection and quantification of various GMO events.

View Article and Find Full Text PDF

Response of Crop Yield and Productivity Contribution Rate to Long-Term Different Fertilization in Northeast of China.

Plants (Basel)

January 2025

Heilongjiang Academy of Black Soil Conservation and Utilization, Harbin 150086, China.

To reveal the changes in crop yield and contribution rate of black soil productivity under long-term different fertilization conditions in black soil areas and to find the important significance of fertilization for sustainable and stable crop yield, high yield, and improving the contribution rate of black soil nutrients. Based on the long-term experiment of black soil fertility in Harbin, the Ministry of Agriculture and Rural Affairs, under the maize-wheat-soybean rotation system, crop yield, sustainability and stability of yield, the contribution rate of black soil productivity, and natural nutrient supply capacity under 10 fertilization treatments (CK, NP, NK, PK, NPK, M, MNP, MNK, MPK, and MNPK) were analyzed. Results showed that, compared with the treatment of chemical fertilizer, yields of maize, wheat, and soybeans increased under treatment of organic fertilizer combined with chemical fertilizer, among which the yields of maize and wheat changed the most.

View Article and Find Full Text PDF

Increasing atmospheric CO levels have a variety of effects that can influence plant responses to microbial pathogens. However, these responses are varied, and it is challenging to predict how elevated CO (eCO) will affect a particular plant-pathogen interaction. We investigated how eCO may influence disease development and responses to diverse pathogens in the major oilseed crop, soybean.

View Article and Find Full Text PDF

Simultaneous determination of vegetable oil frying frequency and peroxide value based on the three-dimensional fluorescence spectroscopy and machine learning.

Food Chem

December 2024

Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, PR China; Weifang Institute of food science and processing technology, Weifang 261000, PR China. Electronic address:

The practice of deep-frying introduces various health concerns. Assessing the quality of frying oil is paramount. This study employs three-dimensional fluorescence spectroscopy to evaluate the peroxide value of vegetable oils after varying frying times.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!