Background: Mutations in several genes of Caenorhabditis elegans confer altered sensitivities to volatile anesthetics. A mutation in one gene, gas-1(fc21), causes animals to be immobilized at lower concentrations of all volatile anesthetics than in the wild type, and it does not depend on mutations in other genes to control anesthetic sensitivity. gas-1 confers different sensitivities to stereoisomers of isoflurane, and thus may be a direct target for volatile anesthetics. The authors have cloned and characterized the gas gene and the mutant allele fc21.
Methods: Genetic techniques for nematodes were as previously described. Polymerase chain reaction, sequencing, and other molecular biology techniques were performed by standard methods. Mutant rescue was done by injecting DNA fragments into the gonad of mutant animals and scoring the offspring for loss of the mutant phenotype.
Results: The gas-1 gene was cloned and identified. The protein GAS-1 is a homologue of the 49-kd (IP) subunit of the mitochondrial NADH-ubiquinone-oxidoreductase (complex I of the respiratory chain). gas-1(fc21) is a missense mutation replacing a strictly conserved arginine with lysine.
Conclusions: The function of the 49-kd (IP) subunit of complex I is unknown. The finding that mutations in complex I increase sensitivity of C. elegans to volatile anesthetics may implicate this physiologic process in the determination of anesthetic sensitivity. The hypersensitivity of animals with a mutation in the gas-1 gene may be caused by a direct anesthetic effect on a mitochondrial protein or secondary effects at other sites caused by mitochondrial dysfunction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/ALN.0000000000005143 | DOI Listing |
Background: Previously, a depth of anesthesia bispectral index (BIS™) <45 was considered lowand found to have no clinical benefit. A BIS <35 was considered very low and was not only without evident clinical benefit but also associated with a greater risk of postoperative delirium. We considered the association between BIS and the anesthetic dose of inhalational agents, quantified using the minimum alveolar concentration (MAC) fraction, which was the patient's end-tidal inhalational agent concentration divided by the agent's altitude- and age-adjusted minimum alveolar percentage concentration.
View Article and Find Full Text PDFACS Sens
January 2025
School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China.
Visual, sensitive, and selective detection of carcinogenic substances is highly desired in portable health protection and practical medicine production. However, achieving this goal presents significant challenges with the traditional single-mode sensors reported so far, as they have limited sensing mechanisms and provide only a single output signal. Here, we report an effective optical and electrical dual-mode sensor for the visual, sensitive, and selective detection of -nitrosodiethylamine (NDEA), a typical volatile carcinogenic substance, leveraging the synergy of ionic liquid-doped liquid crystals (IL-LC).
View Article and Find Full Text PDFIndian J Med Res
November 2024
Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, India.
Background & objectives The choice of anesthetic for better perioperative conservation of immune responses has always been contentious. This study investigated the differential impact of the intravenous anesthetic, propofol, and the volatile anesthetic, isoflurane on the T cell immune responses, if any, among individuals going through perioperative breast cancer. Methods Perioperative blood samples (preoperative, intraoperative and postoperative) collected from participants with breast cancer in two arms namely isoflurane arm (n=50) and the propofol arm (n=50) were analyzed for T cell immune response using flow cytometry and ELISA.
View Article and Find Full Text PDFCommun Med (Lond)
December 2024
Rostock Medical Breath Research Analytics and Technologies (ROMBAT), Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Rostock University Medical Center, Rostock, Germany.
Background: Menopause driven decline in estrogen exposes women to risk of osteoporosis. Detection of early onset and silent progression are keys to prevent fractures and associated burdens.
Methods: In a discovery cohort of 120 postmenopausal women, we combined repeated quantitative pulse-echo ultrasonography of bone, assessment of grip strength and serum bone markers with mass-spectrometric analysis of exhaled metabolites to find breath volatile markers and quantitative cutoff levels for osteoporosis.
NeuroSci
December 2024
Department of Palliative Medicine, Poznan University of Medical Sciences, 61-701 Poznań, Poland.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!