Unlabelled: Mineral-organic matter-microbe interactions greatly impact the biogeochemical processes and biodiversity in soils. An increasing trend of particle size (PS) in mangrove soils has been observed because of the relative sea level rise. However, the impacts of PS increase on the microbial biogeochemical functions and carbon sink in the mineral-associated microcosms are exceedingly nebulous. This work showed a remarkable difference in the communities of mineral-associated microorganisms (MMOs) in various PS fractions. Heavy metal contents and urease activity were the factors that mostly driven the MMO community variation in different PS fractions. Large PS fraction attenuated the stability of MMO communities according to the co-occurrence network characteristics. The PS increase significantly ( < 0.05) lowered the gene abundances for carbon input (e.g., carbon fixation) and raised the gene abundances for carbon loss (e.g., aerobic respiration). Combined with the significant decrease of mineral-associated organic carbon (MOC) in large PS fraction ( < 0.05), this work inferred that the PS increase could weaken the MOC sink partially due to the MMO function shift for carbon cycle. The current work indicated unhealthy changes of MMO communities and MOC storage in mangrove soils, and PS was of significance as an indicator for predicting the carbon sink function, especially for the stable form, such as MOC, in the soils of mangroves under the ecological background of climate migration.
Importance: Carbon with stable forms, such as mineral-associated organic carbon (MOC), is crucial for the sink capabilities in mangrove soils, and mineral-associated microorganisms (MMOs) are important players for the formation and metabolism of MOC. Therefore, the future successions of the MMO functions and MOC contents under the background of climate change are of value for a deeper understanding of mangrove ecology. The relative sea level rise caused by the global warming results in the increase of mangrove soil particle size (PS), which provides distinct microcosms for MMOs and MOC. However, the responses of MMO functions and MOC content to the PS increase of mangrove soils are unknown. The current study aims to reveal the succession regulations of MMO functions and their potential ecological impacts for the storages of MOC in different PS fractions, therefore widening our knowledge of future function migration and promoting the research development of mangrove.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11497786 | PMC |
http://dx.doi.org/10.1128/aem.01272-24 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!