Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this study, the effect of halide anions on the selectivity of the CO reduction reaction to CO was investigated in choline-based ethylene glycol solutions containing different halides (ChCl : EG, ChBr : EG, ChI : EG). The CORR was studied using silver (Ag) and gold (Au) electrodes in a compact H-cell. Our findings reveal that chloride effectively suppresses the hydrogen evolution reaction and enhances the selectivity of carbon monoxide production on both Ag and Au electrodes, with relatively high selectivity values of 84 % and 62 %, respectively. Additionally, the effect of varying ethylene glycol content in the choline chloride-containing electrolyte (ChCl : EG 1 : X, X=2, 3, 4) was investigated to improve the current density during CORR on the Ag electrode. We observed that a mole ratio of 1 : 4 exhibited the highest current density with a comparable faradaic efficiency toward CO. Notably, an evident surface reconstruction process took place on the Ag surface in the presence of Cl ions, whereas on Au, this phenomenon was less pronounced. Overall, this study provides new insights into anion-induced surface restructuring of Ag and Au electrodes during CORR, and its consequences on the reduction performance on such surfaces in non-aqueous electrolytes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11564868 | PMC |
http://dx.doi.org/10.1002/open.202400166 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!