A model for zwitterionic polymers and their capacitance applications.

J Chem Phys

Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd, Pasadena, California 91125, USA.

Published: September 2024

Zwitterions have been shown experimentally to enhance the dielectric constant of ionic media, owing to their large molecular dipole. Many studies since explored the enhancement of ionic conductivity with zwitterion additives as well as bulk behavior of zwitterions. Here, we examine the capacitance behavior of zwitterions between charged parallel plates using a mean-field theory. Employing only chain connectivity of a cation and anion with neutral monomers in between with mean-field electrostatics, we show that our model captures the high-dielectric behavior of zwitterions. We also predict an optimum in the capacitance of zwitterionic media as a function of chain length. To address the issue of zwitterion screening near charged surfaces, we demonstrate that zwitterions simultaneously partially screen charged walls and act as a pure dielectric that propagates the electric field far from the surface. Moreover, we show that salt solutions with zwitterionic additives outperform the energy density of both salt-only and zwitterion-only capacitors. We find that salt-only capacitors perform better at low applied potential, whereas salt capacitors with zwitterionic additives perform better at high applied potential.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0226496DOI Listing

Publication Analysis

Top Keywords

behavior zwitterions
12
zwitterionic additives
8
perform better
8
applied potential
8
zwitterions
5
model zwitterionic
4
zwitterionic polymers
4
polymers capacitance
4
capacitance applications
4
applications zwitterions
4

Similar Publications

Zwitterionic polymers have garnered significant attention for their distinctive properties, such as biocompatibility, antifouling capabilities, and resistance to protein adsorption, making them promising candidates for a wide range of applications, including drug delivery, oil production inhibitors, and water purification membranes. This study reports the synthesis and characterization of zwitterionic monomers and polymers through the modification of linear, vinyl, and aromatic heterocyclic functional groups via reaction with 1,3-propanesultone. Four zwitterionic polymers with varying molecular structures-ranging from linear to five and six membered ring systems-were synthesized: poly(sulfobetaine methacrylamide) (pSBMAm), poly(sulfobetaine-1-vinylimidazole) (pSB1VI), poly(sulfobetaine-2-vinylpyridine) (pSB2VP), and poly(sulfobetaine-4-vinylpyridine) (pSB4VP).

View Article and Find Full Text PDF

Impact of Glycosylation of Apolipoprotein D on Its Interaction with Gold Nanoparticles: Insights from Molecular Dynamics Simulations.

ACS Appl Mater Interfaces

January 2025

Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China.

Efficient delivery of nanoparticles (NPs) as carriers for biochemical substances is crucial in various biomedical applications. In this study, we systematically investigate the interactions between glycosylated and nonglycosylated forms of Apolipoprotein D (ApoD) with gold nanoparticles (AuNPs) functionalized with different polymer coatings, including polyethylene glycol (PEG) and zwitterionic polymers. Using all-atom molecular dynamics simulations, we demonstrate that glycosylation significantly enhances the adsorption behavior of ApoD on AuNP surfaces, with the extent of this enhancement being dependent on the type (especially the charge property) of the polymer coatings.

View Article and Find Full Text PDF

Fouling-resistant coating materials have important applications in marine industry and biomedicine. Zwitterionic carboxybetaine polymers have demonstrated robust antibiofouling functionalities in experiments. In this work, we performed atomistic molecular dynamics simulations to study the molecular mechanism of hydration and antibiofouling of poly(carboxybetaine acrylamide) (polyCBAA) brush surfaces.

View Article and Find Full Text PDF

RNA Order Regulates Its Interactions with Zwitterionic Lipid Bilayers.

Nano Lett

January 2025

Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland.

RNA-lipid interactions directly influence RNA activity, which plays a crucial role in the development of new applications in medicine and biotechnology. However, while specific preferential behaviors between RNA and lipid bilayers have been identified experimentally, their molecular origin remains unexplored. Here we use molecular dynamics simulations to investigate the interaction between RNA and membranes composed of zwitterionic lipids at the atomistic level.

View Article and Find Full Text PDF

Sum frequency generation vibrational spectroscopy was applied to study the surface hydration and protein adsorption behavior on several polymer coatings based on pyridine, imidazole, and amine side groups along with vinyl or methacrylate backbones and their corresponding zwitterionic forms with carboxybetaine or sulfobetaine side chains, prepared by initiated chemical vapor deposition (iCVD). iCVD also enables facile tuning of the cross-linking density of the polymer coatings by blending in a cross-linker during the deposition, namely, 1,3,5,7-tetramethyl-1,3,5,7-tetravinyl cyclotetrasiloxane. Our results show that both the low- and high-cross-linking density zwitterionic polymers exhibit significantly better antifouling activities compared to those of the polymers without the zwitterionic side chains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!