The photochemical decomposition of ethyl(aqua)cobaloxime, [EtCo(dmgH)HO], a vitamin B derivative model complex, was investigated to understand the mechanism of the Co-C bond scission induced by light. Upon irradiation of [EtCo(dmgH)HO], the Co-C bond undergoes homolytic scission, resulting in Et/Co(II) radical pair (RP) formation in a similar fashion observed in alkylcobalamins. The [EtCo(dmgH)HO] complex acts as a potent quencher of a wide variety of excited states in the presence of organic molecules such as benzophenone. It has been proposed that the reaction mechanism involves Dexter energy transfer, resulting in the bond dissociation process. Two issues associated with the proposed mechanism have been investigated, namely, (i) how the energy transfer occurs from benzophenone to cobaloxime and (ii) how the Co-C bond is activated and cleaved. Both TD-DFT and CASSCF/NEVPT2 methods have been applied to show the feasibility of the energy transfer reaction via the triplet pathway from photocatalyst to substrate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.4c02091 | DOI Listing |
ChemSusChem
December 2024
National & Local Joint Engineering Research Center on Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China.
The cleavage and functionalization of carbon-carbon bonds are crucial for the reconstruction and upgrading of organic matrices, particularly in the valorization of biomass, plastics, and fossil resources. However, the inherent kinetic inertness and thermodynamic stability of C-C σ bonds make this process challenging. Herein, we fabricated a glucose-derived defect-rich hierarchical porous carbon as a heterogeneous catalyst for the oxidative cleavage and esterification of C(CO)-C bonds.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States.
The adenosylcobalamin (AdoCbl)-dependent enzyme ethanolamine ammonia-lyase (EAL) catalyzes the conversion of ethanolamine to acetaldehyde and ammonia. As is the case for all AdoCbl-dependent isomerases, the catalytic cycle of EAL is initiated by homolytic cleavage of the cofactor's Co-C bond, producing Cocobalamin (CoCbl) and an adenosyl radical that serves to abstract a hydrogen atom from the substrate. Remarkably, in the presence of substrate, the rate of Co-C bond homolysis of enzyme-bound AdoCbl is increased by 12 orders of magnitude.
View Article and Find Full Text PDFActa Crystallogr E Crystallogr Commun
October 2024
Toyota Central R&D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan.
The asymmetric unit of the title compound, [Co(CBrO)(CHN)(HO)] or [Co(Brbdc)(im)(HO)] , comprises half of Co ion, tetra-bromo-benzene-dicarboxylate (Brbdc), imidazole (im) and a water mol-ecule. The Co ion exhibits a six-coordinated octa-hedral geometry with two oxygen atoms of the Brbdc ligand, two oxygen atoms of the water mol-ecules, and two nitro-gen atoms of the im ligands. The carboxyl-ate group is nearly perpendicular to the benzene ring and shows monodentate coordination to the Co ion.
View Article and Find Full Text PDFPhys Chem Chem Phys
November 2024
Baylor University, 1311 S 5th St, Waco, TX 76706, USA.
Quantum mechanical tunneling (QMT) is a well-documented phenomenon in the C-H bond activation mechanism and is commonly identified by large KIE values. Herein we present surprising findings in the kinetic study of hydrogen tunneling in the Co mediated decomposition of acetic acid and its perdeuterated isotopologue, conducted with the energy resolved single photon initiated dissociative rearrangement reaction (SPIDRR) technique. Following laser activation, the reaction proceeds along parallel product channels Co(CHO) + CO and Co(CHO) + HO.
View Article and Find Full Text PDFInt J Biol Macromol
November 2024
College of Material Science and Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, PR China.
In the background of severe water pollution, adsorption is a charming technique for heavy metal remediation. In this work, NiFeO decorated chitosan-graphene oxide (NFCG) was prepared by simple hydrothermal method for Co(II) remediation application. Adsorption mechanism was elaborately elucidated based on multiple evidences extracted from adsorption fitting (isotherms, thermodynamics and kinetics), spectroscopic test (XPS, UV-Vis absorption, fluorescent emission and Raman spectra) and the hard-soft acid-base (HSAB) theory inspection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!