Bioorthogonal bond-cleavage reactions have emerged as a powerful tool for precise spatiotemporal control of (bio)molecular function in the biological context. Among these chemistries, the tetrazine-triggered elimination of cleavable trans-cyclooctenes (click-to-release) stands out due to high reaction rates, versatility, and selectivity. Despite an increasing understanding of the underlying mechanisms, application of this reaction remains limited by the cumulative performance trade-offs (i.e., click kinetics, release kinetics, release yield) of existing tools. Efficient release has been restricted to tetrazine scaffolds with comparatively low click reactivity, while highly reactive aryl-tetrazines give only minimal release. By introducing hydroxyl groups onto phenyl- and pyridyl-tetrazine scaffolds, we have developed a new class of 'bioorthogonal scissors' with unique chemical performance. We demonstrate that hydroxyaryl-tetrazines achieve near-quantitative release upon accelerated click reaction with cleavable trans-cyclooctenes, as exemplified by click-triggered activation of a caged prodrug, intramitochondrial cleavage of a fluorogenic probe (turn-on) in live cells, and rapid intracellular bioorthogonal disassembly (turn-off) of a ligand-dye conjugate.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202411707DOI Listing

Publication Analysis

Top Keywords

cleavable trans-cyclooctenes
8
kinetics release
8
release
5
transforming aryl-tetrazines
4
aryl-tetrazines bioorthogonal
4
bioorthogonal scissors
4
scissors systematic
4
systematic cleavage
4
cleavage trans-cyclooctenes
4
trans-cyclooctenes bioorthogonal
4

Similar Publications

Bioorthogonal bond-cleavage reactions have emerged as a powerful tool for precise spatiotemporal control of (bio)molecular function in the biological context. Among these chemistries, the tetrazine-triggered elimination of cleavable trans-cyclooctenes (click-to-release) stands out due to high reaction rates, versatility, and selectivity. Despite an increasing understanding of the underlying mechanisms, application of this reaction remains limited by the cumulative performance trade-offs (i.

View Article and Find Full Text PDF

An increase in the click-to-release reaction rate between cleavable trans-cyclooctenes (TCO) and tetrazines would be beneficial for drug delivery applications. In this work, we have developed a short and stereoselective synthesis route towards highly reactive sTCOs that serve as cleavable linkers, affording quantitative tetrazine-triggered payload release. In addition, the fivefold more reactive sTCO exhibited the same in vivo stability as current TCO linkers when used as antibody linkers in circulation in mice.

View Article and Find Full Text PDF

Modified trans-cyclooctenes (TCO) are capable of highly efficient molecular manipulations in biological environments, driven by the bioorthogonal reaction with tetrazines (Tz). The development of click-cleavable TCO has fueled the field of in vivo chemistry and enabled the design of therapeutic strategies that have already started to enter the clinic. A key element for most of these approaches is the implementation of a cleavable TCO linker.

View Article and Find Full Text PDF

Bond-cleavage reactions triggered by bioorthogonal tetrazine ligation have emerged as strategies to chemically control the function of (bio)molecules and achieve activation of prodrugs in living systems. While most of these approaches make use of caged amines, current methods for the release of phenols are limited by unfavorable reaction kinetics or insufficient stability of the Tz-responsive reactants. To address this issue, we have implemented a self-immolative linker that enables the connection of cleavable trans-cyclooctenes (TCO) and phenols via carbamate linkages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!