Due to recent improvements, Nanopore sequencing has become a promising method for experiments relying on amplicon sequencing. We describe a flexible workflow to generate and annotate high-quality, full-length 16S rDNA amplicons. We evaluated it for two applications, namely, (i) identification of bacterial isolates and (ii) species-level profiling of microbial communities. We assessed the identification of single bacterial isolates by sequencing, using a set of barcoded full-length 16S rRNA gene primer pairs (pair A), on 47 isolates encompassing multiple genera and compared those results with matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS)-based identification. Species-level community profiling was tested with two sets of barcoded full-length 16S primer pairs (A and B) and compared to the results obtained with shotgun Illumina sequencing using 27 stool samples. We developed a Nextflow pipeline to retain high-quality reads and taxonomically annotate them. We found high agreement between our workflow and MALDI-TOF data for isolate identification (positive predictive value = 0.90, Cramér's = 0.857, and Theil's = 0.316). For species-level community profiling, we found strong correlations ( > 0.6) of alpha diversity indices between the two primer sets and Illumina sequencing. At the community level, we found significant but small differences when comparing sequencing techniques. Finally, we found a moderate to strong correlation when comparing the relative abundances of individual species (average = 0.6 and 0.533 for primers A and B). Despite identified shortcomings, the proposed workflow enabled accurate identification of single bacterial isolates and prominent features in microbial communities, making it a worthwhile alternative to MALDI-TOF MS and Illumina sequencing.IMPORTANCEA quick, robust, simple, and cost-effective method to identify bacterial isolates and communities in each sample is indispensable in the fields of microbiology and infection biology. Recent technological advances in Oxford Nanopore Technologies sequencing make this technique an attractive option considering the adaptability, portability, and cost-effectiveness of the platform, even with small sequencing batches. Here, we validated a flexible workflow to identify bacterial isolates and characterize bacterial communities using the Oxford Nanopore Technologies sequencing platform combined with the most recent v14 chemistry kits. For bacterial isolates, we compared our nanopore-based approach to matrix-assisted laser desorption ionization-time of flight mass spectrometry-based identification. For species-level profiling of complex bacterial communities, we compared our nanopore-based approach to Illumina shotgun sequencing. For reproducibility purposes, we wrapped the code used to process the sequencing data into a ready-to-use and self-contained Nextflow pipeline.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11494973 | PMC |
http://dx.doi.org/10.1128/msystems.00859-24 | DOI Listing |
Sci Rep
December 2024
Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem Str. 10, Veszprém, 8200, Hungary.
Ensuring everyone enjoys healthy lifestyles and well-being at all ages, Progress has been made in increasing access to clean water and sanitation facilities and reducing the spread of epidemics and diseases. The synthesis of nano-particles (NPs) by using microalgae is a new nanobiotechnology due to the use of the biomolecular (corona) of microalgae as a capping and reducing agent for NP creation. This investigation explores the capacity of a distinct indigenous microalgal strain to synthesize silver nano-particles (AgNPs), as well as its effectiveness against multi-drug resistant (MDR) bacteria and its ability to degrade Azo dye (Methyl Red) in wastewater.
View Article and Find Full Text PDFSci Rep
December 2024
OMICS Laboratory, Department of Biotechnology, University of North Bengal, Siliguri, West Bengal, 734013, India.
Cadmium, a toxic heavy metal, poses significant global concern. A strain of the genus Pseudomonas, CD3, demonstrating significant cadmium resistance (up to 3 mM CdCl.HO) was identified from a pool of 26 cadmium-resistant bacteria isolated from cadmium-contaminated soil samples from Malda, India.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Chemical Engineering, Polytechnic School, University of São Paulo, Av. Prof. Luciano Gualberto, Travessa 3, n. 380., São Paulo, SP, CEP 05508-900, Brazil.
16S ribosomal nucleic acid (16S rRNA) analysis allows to specifically target the metabolically active members of microbial communities. The stability of the ratios between target genes in the workflow, which is essential for the bioprocess-relevance of the data derived from this analysis, was investigated using synthetic mock communities constructed by mixing purified 16S rRNA from Bacillus subtilis (Bs), Staphylococcus aureus (Sa), Pseudomonas aeruginosa (Pa), Klebsiella pneumoniae (Kp) and Burkholderia cepacia (Bc) in different proportions. The RT reaction yielded one copy of cDNA per rRNA molecule for Pa, Bc and Sa but only 2/3 of the expected cDNA from 16S rRNAs of Bs and Kp.
View Article and Find Full Text PDFNPJ Biofilms Microbiomes
December 2024
Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, 2200, Denmark.
The evolution of antimicrobial resistance (AMR) in biofilms, driven by mechanisms like oxidative stress, is a major challenge. This study investigates whether antioxidants (AOs) such as N-acetyl-cysteine (NAC) and Edaravone (ED) can reduce AMR in Pseudomonas aeruginosa biofilms exposed to sub-inhibitory concentrations of ciprofloxacin (CIP). In vitro experimental evolution studies were conducted using flow cells and glass beads biofilm models.
View Article and Find Full Text PDFJ Antimicrob Chemother
December 2024
Division of Mycobacterial and Respiratory Infections, Department of Medicine, National Jewish Health, Denver, CO, USA.
Background: Mycobacterium abscessus is a highly drug-resistant non-tuberculous mycobacterium (NTM) for which treatment is limited by the lack of active oral antimycobacterials and frequent adverse reactions. Epetraborole is a novel oral, boron-containing antimicrobial that inhibits bacterial leucyl-tRNA synthetase, an essential enzyme in protein synthesis, and has been shown to have anti-M. abscessus activity in preclinical studies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!