Enantiopure 1,2-diols are widely used in the production of pharmaceuticals, cosmetics, and functional materials as essential building blocks or bioactive compounds. Nevertheless, developing a mild, efficient and environmentally friendly biocatalytic route for manufacturing enantiopure 1,2-diols from simple substrate remains a challenge. Here, we designed and realized a step-wise biocatalytic cascade to access chiral 1,2-diols starting from aromatic aldehyde and formaldehyde enabled by a newly mined benzaldehyde lyase from Sphingobium sp. combined with a pair of tailored-made short-chain dehydrogenase/reductase from Pseudomonas monteilii (PmSDR-MuR and PmSDR-MuS) capable of producing (R)- and (S)-1-phenylethane-1,2-diol with 99% ee. The planned biocatalytic cascade could synthesize a series of enantiopure 1,2-diols with a broad scope (16 samples), excellent conversions (94%-99%), and outstanding enantioselectivity (up to 99% ee), making it an effective technique for producing chiral 1,2-diols in a more environmentally friendly and sustainable manner.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bit.28841DOI Listing

Publication Analysis

Top Keywords

chiral 12-diols
12
enantiopure 12-diols
12
short-chain dehydrogenase/reductase
8
environmentally friendly
8
biocatalytic cascade
8
12-diols
6
rational design
4
design short-chain
4
dehydrogenase/reductase enantio-complementary
4
enantio-complementary synthesis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!