Asiaticoside protected brain injury in hypertensive intracerebral hemorrhage via activation of the PI3K/AKT pathway.

J Biochem Mol Toxicol

Department of Neurosurgery, Henan Provincial People's Hospital, Henan Provincial Cerebrovascular Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, China.

Published: September 2024

Hypertensive intracerebral hemorrhage (HICH) is a destructive disease with high mortality, incidence, and disability. Asiaticoside (AC) is a triterpenoid derivative that has demonstrated to exert a protective effect on neuron and blood vessel. To investigate the function and potential mechanism of AC on HICH. Human brain microvascular endothelial cells (hBMECs) were treated with 20 U/mL thrombin for 24 h to establish the HICH model in vitro, and AC with the concentration of 1, 2 and 4 µM were used to incubate hBMECs. The effect and potential mechanism of AC on HICH were investigated by using cell counting kit-8, flow cytometry, tube forming assays, vascular permeability experiments and western blot assays. In vivo, rats were injected with 20 µL hemoglobin with a concentration of 150 mg/mL, and then intragastrically administrated with 1.25, 2.5 and 5 mg/kg AC. Behavioral tests, brain water content measurement, hematoxylin-eosin (HE) staining, terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick end labeling assays, and western blot were used to assess the effect and potential mechanism of AC on HICH. AC (at 2 and 4 µM) improved the proliferation, apoptosis, angiogenesis and vascular permeability in thrombin-induced hBMECs (p < 0.05). Besides, AC (2.5 and 5 mg/kg) ameliorated behavioral scores, brain water content, pathological lesion, apoptosis and the expression of vascular permeability-related proteins in rats with HICH (p < 0.05). In addition, AC elevated the expression of PI3K/AKT pathway after HICH both in cell and animal models (p < 0.05). Application of LY294002, an inhibitor of PI3K/AKT pathway, reversed the ameliorative effect of AC on the proliferation, apoptosis, angiogenesis and vascular permeability in thrombin-induced hBMECs (p < 0.05). AC reduced brain damage by increasing the expression of the PI3K/AKT pathway after HICH.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbt.23843DOI Listing

Publication Analysis

Top Keywords

potential mechanism
12
mechanism hich
12
hypertensive intracerebral
8
intracerebral hemorrhage
8
vascular permeability
8
western blot
8
hich
5
asiaticoside protected
4
protected brain
4
brain injury
4

Similar Publications

Background: Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with limited treatment options and a poor prognosis. The critical role of epigenetic alterations such as changes in DNA methylation, histones modifications, and chromatin remodeling, in pancreatic tumors progression is becoming increasingly recognized. Moreover, in PDAC these aberrant epigenetic mechanisms can also limit therapy efficacy.

View Article and Find Full Text PDF

Background: Dysfunction in podocyte mitophagy has been identified as a contributing factor to the onset and progression of diabetic nephropathy (DN), and BMAL1 plays an important role in the regulation of mitophagy. Thus, this study intended to examine the impact of BMAL1 on podocyte mitophagy in DN and elucidate its underlying mechanisms.

Materials And Methods: High D-glucose (HG)-treated MPC5 cells was used as a podocyte injury model for investigating the potential roles of BMAL1 in DN.

View Article and Find Full Text PDF

Background: The treatment options to delay the progression of diabetic nephropathy (DN), a key contributor to chronic kidney disease (CKD), are urgently needed. Previous studies reported that traditional Chinese medicine Panax notoginseng (PNG) exerted beneficial effects on DN. However, the renoprotective effects of Notoginsenoside R2 (NR2), an active component of PNG, on DN have not been investigated.

View Article and Find Full Text PDF

Crosstalk between non-coding RNAs and programmed cell death in colorectal cancer: implications for targeted therapy.

Epigenetics Chromatin

January 2025

Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.

Background: Colorectal cancer (CRC) remains one of the most common causes of cancer-related mortality worldwide. Its progression is influenced by complex interactions involving genetic, epigenetic, and environmental factors. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), have been identified as key regulators of gene expression, affecting diverse biological processes, notably programmed cell death (PCD).

View Article and Find Full Text PDF

The thrombolytic protease tissue plasminogen activator (tPA) is expressed in the CNS, where it regulates diverse functions including neuronal plasticity, neuroinflammation, and blood-brain-barrier integrity. However, its role in different brain regions such as the substantia nigra (SN) is largely unexplored. In this study, we characterize tPA expression, activity, and localization in the SN using a combination of retrograde tracing and β-galactosidase tPA reporter mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!