AI Article Synopsis

  • Plants produce fatty acid derivatives that play important roles in their defense mechanisms.
  • The study identified and characterized eight FAT genes from tomato and potato, revealing their conserved structures and regulatory functions.
  • Knockout experiments using CRISPR/Cas9 on specific FAT genes resulted in notable changes in fatty acid content and reduced leaf features like trichome and stoma density.

Article Abstract

Plants produce numerous fatty acid derivatives, and some of these compounds have significant regulatory functions, such as governing effector-induced resistance, systemic resistance, and other defense pathways. This study systematically identified and characterized eight FAT genes (Acyl-acyl carrier protein thioesterases), four in the Solanum lycopersicum and four in the Solanum tuberosum genome. Phylogenetic analysis classified these genes into four distinct groups, exhibiting conserved domain structures across different plant species. Promoter analysis revealed various cis-acting elements, most of which are associated with stress responsiveness and growth and development. Micro-RNA (miRNA) analysis identified specific miRNAs, notably miRNA166, targeting different FAT genes in both species. Utilizing clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9)-mediated knockout, mutant lines for SlFATB1 and SlFATB3 were successfully generated and exhibited diverse mutation types. Biochemical evaluation of selected mutant lines revealed significant changes in fatty acid composition, with linoleic and linolenic acid content variations. The study also explored the impact of FAT gene knockout on tomato leaf architecture through scanning electron microscopy, providing insights into potential morphological alterations. Knocking out of FAT genes resulted in a significant reduction in both trichome and stoma density. These findings contribute to a comprehensive understanding of FAT genes in Solanaceous species, encompassing genetic, functional, and phenotypic aspects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11628882PMC
http://dx.doi.org/10.1002/tpg2.20506DOI Listing

Publication Analysis

Top Keywords

fat genes
20
fatty acid
8
mutant lines
8
fat
6
genes
6
exploring role
4
role fat
4
genes solanaceae
4
species
4
solanaceae species
4

Similar Publications

White adipose tissues and skeletal muscles as a target of chrysin during the treatment of obesity in rats.

Sci Rep

January 2025

Department of Biochemistry, Medical Research Institute, Alexandria University, 165 El-Horreya Avenue, EL-Hadara, POB 21561, Alexandria, Egypt.

Obesity is a rapidly growing epidemic that continues to be a major severe health problem due to its association with various adverse health consequences. Since 1975, the WHO estimates that the prevalence of obesity has tripled globally. Chrysin is a flavone that is mostly found in the Passiflore species of plants and in propolis.

View Article and Find Full Text PDF

A dissociated glucocorticoid receptor modulator mitigates glucolipotoxicity in the endocrine pancreas and peripheral tissues: Preclinical data from a mouse model of diet-induced type 2 diabetes.

Life Sci

January 2025

Immuno-Endocrinology, Diabetes & Metabolism Laboratory, Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET - Universidad Austral, Pilar, Argentina; Facultad de Ciencias Biomédicas, , Universidad Austral, Pilar, Argentina. Electronic address:

Aims: Type 2 diabetes (T2D) is a prevalent metabolic disease linked to obesity and metabolic syndrome (MS). The glucolipotoxic environment (GLT) impacts tissues causing low-grade inflammation, insulin resistance and the gradual loss of pancreatic β-cell function, leading to hyperglycemia. We have previously shown that Compound A (CpdA), a plant-derived dissociative glucocorticoid receptor-modulator with inflammation-suppressive activity, displays protective effects on β-cells in type 1 diabetes murine models.

View Article and Find Full Text PDF

Aims: Gestational diabetes mellitus (GDM) is the most common complication of pregnancy and is known to be associated with an increased risk of postpartum metabolic disease. Based on the important role that the intestinal microbiota plays in blood glucose regulation and insulin sensitivity, supplementation of probiotic and postbiotic strains could improve glucose metabolism and tolerance in GDM.

Main Methods: 56 4-week-old female C57BL/6J-mice were divided into 4 groups (n = 14 animals/group): control (CNT), high-fat/high-sucrose (HFS), pA1c® alive (pA1c®) and heat-inactivated pA1c® (pA1c®HI).

View Article and Find Full Text PDF

Mechanistic insights into GLP-1 receptor agonist-induced weight loss through ceRNA network analysis.

Genomics

January 2025

Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang 212000, Jiangsu, China. Electronic address:

Background: GLP-1 receptor agonists (GLP-1RA) have been extensively utilized in the management of body weight in individuals with obesity. Circular RNA (circRNA), a class of covalently closed RNA molecules, has garnered increasing attention for its potential role in the pathogenesis of obesity. However, the specific mechanisms through which circRNA contributes to GLP-1RA-induced weight loss remains elusive.

View Article and Find Full Text PDF

Insights into the progressive impact of high-fat-diet induced insulin resistance on skeletal muscle and myocardium: A comprehensive study on C57BL6 mice.

PLoS One

January 2025

Key Laboratory for Prevention and Control of Common Animal Diseases in General Higher Education Institutions of Heilongjiang Province, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.

This study aims to provide a theoretical foundation for the future management of diabetes at various stages induced by a high-fat diet. Specifically, it seeks to determine the appropriate pharmacological interventions for each phase of diabetes development and the targeted therapeutic directions at different stages of diabetes progression. This investigation employed C57BL6 mice as experimental subjects, successfully establishing an insulin resistance model through a 12-week high-fat diet.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!