Homeostatic regulation of excitability and synaptic transmission ensures stable neural circuit output under changing conditions. We find that pre- or postsynaptic weakening of motor neuron (MN) to muscle glutamatergic transmission in larva has little impact on locomotion, suggesting non-synaptic compensatory mechanisms. imaging of MN to muscle synaptic transmission and MN activity both show that synaptic weakening activity in tonic type Ib MNs, but not in the phasic type Is MN that innervate the same muscles. Additionally, an inhibitory class of pre-MNs that innervates type Ib-but not Is-MNs activity. Our experiments suggest that weakening of MN evoked synaptic release onto the muscle is compensated for by an increase in MN firing due to a combined cell-autonomous increase in excitability and decreased inhibitory central drive. Selectivity for type Ib MNs may serve to restore tonic drive while absence of firing adjustment in the convergent Is MN can maintain the contraction wave dynamics needed for locomotion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11383027 | PMC |
http://dx.doi.org/10.1101/2024.08.27.609984 | DOI Listing |
Cell Mol Life Sci
December 2024
Univ Angers, INSERM, CNRS, MITOVASC, Équipe CARME, SFR ICAT, F-49000 Angers, France.
Chronic elevated blood pressure impinges on the functioning of multiple organs and therefore harms body homeostasis. Elucidating the protective mechanisms whereby the organism copes with sustained or repetitive blood pressure rises is therefore a topical challenge. Here we address this issue in the adrenal medulla, the master neuroendocrine tissue involved in the secretion of catecholamines, influential hormones in blood pressure regulation.
View Article and Find Full Text PDFNeuropharmacology
December 2024
Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton NY 13902, United States; Developmental Exposure Alcohol Research Center, Binghamton NY 13902, United States. Electronic address:
Individuals with prenatal alcohol exposure (PAE) are at a higher risk for developing alcohol use disorder (AUD). Using a rat model of moderate PAE (mPAE) on gestational day 12 (G12; ∼2 trimesters in humans), a critical period for amygdala development, we have shown disruptions in medial central amygdala (CeM) function, an important brain region associated with the development of AUD. In addition to this, acute ethanol (EtOH) increases GABA transmission in the CeM of rodents in a sex-dependent manner, a mechanism that potentially contributes to alcohol misuse.
View Article and Find Full Text PDFNeurosci Res
December 2024
Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan; Laboratory of Neural Information Processing, Institute for Advanced Research, Nagoya University, Nagoya, Japan; PRESTO/CREST, Japan Science and Technology Agency, Saitama, Japan. Electronic address:
Despite the crucial role of synaptic connections and neural activity in the development and organization of cortical circuits, the mechanisms underlying the formation of functional synaptic connections in the developing human cerebral cortex remain unclear. We investigated the development of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated synaptic transmission using human cortical organoids (hCOs) derived from induced pluripotent stem cells. Two-photon Ca⁺ imaging revealed an increase in the frequency and amplitude of spontaneous activity in hCOs on day 80 compared to day 50.
View Article and Find Full Text PDFCNS Neurosci Ther
December 2024
Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
Background: Mild traumatic brain injury (mTBI) frequently results in persistent cognitive, emotional, and functional impairments, closely linked to disruptions in the default mode network (DMN). Understanding the mechanisms driving these network abnormalities is critical for advancing diagnostic and therapeutic strategies.
Methods: This study adopted a multimodal approach, combining functional connectivity (FC) analysis, diffusion tensor imaging (DTI), and gene expression profiling to investigate DMN disruptions in mTBI.
Neuroscience
December 2024
Department of Psychology, Concordia University, Montreal, Canada. Electronic address:
Estrogens and progesterone can have rapid effects on neuronal function and can modify the use of spatial navigation strategies dependent upon the prefrontal cortex, striatum, and hippocampus. Here, we assessed the effects of 17β-estradiol (E2), progesterone, and its metabolite allopregnanolone, on evoked excitatory postsynaptic potentials in the infralimbic region of the female rat prefrontal cortex. Field excitatory postsynaptic potentials (fEPSPs) evoked by stimulation of layer I were first characterized by recording responses at multiple depths between the cortical surface and the underlying white matter.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!