Background: Hybrid immunity (a combination of natural and vaccine-induced immunity) provides additional immune protection against the coronavirus disease 2019 (COVID-19) reinfection. Today, people are commonly infected and vaccinated; hence, hybrid immunity is the norm. However, the mitigation of the risk of Omicron variant reinfection by hybrid immunity and the durability of its protection remain uncertain. This meta-analysis aims to explore hybrid immunity to mitigate the risk of Omicron variant reinfection and its protective durability to provide a new evidence-based basis for the development and optimization of immunization strategies and improve the public's awareness and participation in COVID-19 vaccination, especially in vulnerable and at-risk populations.
Methods: Embase, PubMed, Web of Science, Chinese National Knowledge Infrastructure, and Wanfang databases were searched for publicly available literature up to 10 June 2024. Two researchers independently completed the data extraction and risk of bias assessment and cross-checked each other. The Newcastle-Ottawa Scale assessed the risk of bias in included cohort and case-control studies, while criteria recommended by the Agency for Health Care Research and Quality (AHRQ) evaluated cross-sectional studies. The extracted data were synthesized in an Excel spreadsheet according to the predefined items to be collected. The outcome was Omicron variant reinfection, reported as an Odds Ratio (OR) with its 95% confidence interval (CI) and Protective Effectiveness (PE) with 95% CI. The data were pooled using a random- or fixed-effects model based on the test. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines were followed.
Results: Thirty-three articles were included. Compared with the natural immunity group, the hybrid immunity (booster vaccination) group had the highest level of mitigation in the risk of reinfection (OR = 0.43, 95% CI:0.34-0.56), followed by the complete vaccination group (OR = 0.58, 95% CI:0.45-0.74), and lastly the incomplete vaccination group (OR = 0.64, 95% CI:0.44-0.93). Compared with the complete vaccination-only group, the hybrid immunity (complete vaccination) group mitigated the risk of reinfection by 65% (OR = 0.35, 95% CI:0.27-0.46), and the hybrid immunity (booster vaccination) group mitigated the risk of reinfection by an additional 29% (OR = 0.71, 95% CI:0.61-0.84) compared with the hybrid immunity (complete vaccination) group. The effectiveness of hybrid immunity (incomplete vaccination) in mitigating the risk of reinfection was 37.88% (95% CI, 28.88-46.89%) within 270-364 days, and decreased to 33.23%% (95% CI, 23.80-42.66%) within 365-639 days; whereas, the effectiveness after complete vaccination was 54.36% (95% CI, 50.82-57.90%) within 270-364 days, and the effectiveness of booster vaccination was 73.49% (95% CI, 68.95-78.04%) within 90-119 days.
Conclusion: Hybrid immunity was significantly more protective than natural or vaccination-induced immunity, and booster doses were associated with enhanced protection against Omicron. Although its protective effects waned over time, vaccination remains a crucial measure for controlling COVID-19.
Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/, identifier, CRD42024539682.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11381385 | PMC |
http://dx.doi.org/10.3389/fpubh.2024.1457266 | DOI Listing |
J Cancer Res Ther
December 2024
School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China.
Tumor-infiltrating lymphocytes (TILs) are key components of the tumor microenvironment (TME) and serve as prognostic markers for breast cancer. Patients with high TIL infiltration generally experience better clinical outcomes and extended survival compared to those with low TIL infiltration. However, as the TME is highly complex and TIL subtypes perform distinct biological functions, TILs may only provide an approximate indication of tumor immune status, potentially leading to biased prognostic results.
View Article and Find Full Text PDFProtein Pept Lett
January 2025
Department of Biology, Faculty of Science, Ege University, Izmir, Turkey.
Like other vertebrates, amphibians possess innate and adaptive immune systems. At the center of the adaptive immune system is the Major Histocompatibility Complex. The important molecules of innate immunity are antimicrobial peptides (AMPs).
View Article and Find Full Text PDFFront Immunol
January 2025
Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands.
Introduction: Tuberculosis (TB) is the deadliest infectious disease worldwide and novel vaccines are urgently needed. HLA-E is a virtually monomorphic antigen presentation molecule and is not downregulated upon HIV co-infection. HLA-E restricted specific CD8 T cells are present in the circulation of individuals with active TB (aTB) and infection (TBI) with or without HIV co-infection, making HLA-E restricted T cells interesting vaccination targets for TB.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
Sonodynamic therapy (SDT), which is non-invasive and controllable has the potential to treat triple-negative breast cancer (TNBC). However, the hypoxia and immunosuppressive tumor microenvironment (TME) often block the production of reactive oxygen species and the induction of SDT-activated immunogenic cell death, thus limiting the activation of adaptive immune responses. To alleviate these challenges, we proposed the development of a multifunctional biomimetic nanoplatform (mTSeIR), which was designed with diselenide-conjugated sonosensitizers and tirapazamine (TPZ), encapsulated within M1 macrophage membrane.
View Article and Find Full Text PDFVet Res
January 2025
Department of Preventive Veterinary Medicine, Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
Swine acute diarrhoea syndrome coronavirus (SADS-CoV), a novel HKU2-related coronavirus of bat origin, is a newly emerged swine enteropathogenic coronavirus that causes severe diarrhoea in piglets. SADS-CoV has a broad cell tropism with the capability to infect a wide variety of cells from human and diverse animals, which implicates its ability to hold high risks of cross-species transmission. The intracellular antiviral immunity, comprised of the intrinsic and innate immunity, represents the first line of host defence against viral infection prior to the onset of adaptive immunity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!