Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This paper presents an innovative fusion model called "CALSE-LSTM," which integrates Convolutional Neural Networks (CNNs), Long Short-Term Memory Networks (LSTMs), self-attention mechanisms, and squeeze-and-excitation attention mechanisms to optimize the estimation accuracy of the State of Charge (SoC). The model incorporates battery historical data as input and employs a dual-attention mechanism based on CNN-LSTM to extract diverse features from the input data, thereby enhancing the model's ability to learn hidden information. To further improve model performance, we fine-tune the model parameters using the Pelican algorithm. Experiments conducted under Urban Dynamometer Driving Schedule (UDDS) conditions show that the CALSE-LSTM model achieves a Root Mean Squared Error (RMSE) of only 1.73 % in lithium battery SoC estimation, significantly better than GRU, LSTM, and CNN-LSTM models, reducing errors by 31.9 %, 31.3 %, and 15 %, respectively. Ablation experiments further confirm the effectiveness of the dual-attention mechanism and its potential to improve SoC estimation performance. Additionally, we validate the learning efficiency of CALSE-LSTM by comparing model training time with the number of iterations. Finally, in the comparative experiment with the Kalman filtering method, the model in this paper significantly improved its performance by incorporating power consumption as an additional feature input. This further verifies the accuracy of CALSE-LSTM in estimating the State of Charge (SoC) of lithium batteries.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11381716 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e36232 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!