This research has dealt with the simulation of liquid nitrogen cavitation inside a convergent nozzle. This is important in cryogenic industrial applications. So in this study, computational fluid dynamics methods have been used for simulating the cavitation phenomenon. The Two-phase model in this research has been a hybrid/mixed model. Also, k- ε turbulence model has been employed in realizable state. For meshing the nozzle geometry, Gambit software has been used, while for numerical simulation, Ansys Fluent software has been employed. For simulation of cavitation, Schnerr and Sauer cavitation model has been utilized. This research has also examined the effect of changing the nozzle outlet diameter and the impact of changing the pressure difference in the inlet and outlet of the nozzle on the cavitation. As a novelty and unlike what would have been expected based on the Bernoulli effect, the results obtained from the simulation showed that the increase/decrease in the nozzle's outlet diameter resulted in an enhanced/diminished extent of cavitation in the nozzle's outlet region. Also, the increase/decrease of the pressure difference in the input and output of the nozzle would lead to a higher/lower extent of cavitation. This research also found that the effect of altering the nozzle's outlet diameter on the extent of cavitation has been far higher than the effect of changing pressure difference in its inlet and outlet. The results also indicated that upon reduction of the nozzle's outlet diameter from the base state (1.02 mm) by 10, 20, 30, 40, and 50 %, the volume fraction of the vapor diminished by 22.23, 43.029, 60.66, 74.73, and 87.16 % respectively. Finally, with the increase in the nozzle's outlet diameter from the base state (1.02 mm) by 10, 20, 30, 40, and 50 %, the volume fraction of the vapor increased by 26.83, 55.27, 84.47, 117.12, and 149.31 % respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11381732PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e36359DOI Listing

Publication Analysis

Top Keywords

outlet diameter
20
nozzle's outlet
20
pressure difference
12
extent cavitation
12
numerical simulation
8
liquid nitrogen
8
convergent nozzle
8
cavitation
8
outlet
8
changing pressure
8

Similar Publications

Study on the mechanism of erosion and wear of elbow pipes by coarse particles in filling slurry.

Sci Rep

December 2024

The Ministry of Education Key Laboratory of High Efficiency Mining and Safety for Metal Mines & School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China.

Coarse particles in filling slurry are the primary factor causing wear in filling elbow pipes, and the wear mechanism of these particles on the pipes is influenced by various factors. To study the erosion and wear mechanism of elbow pipes caused by coarse particles, the motion state of coarse particles under different curvature radii, coarse particle gradations, and pipe diameters was investigated using a simulation method based on the coupling of Fluent and EDEM software, grounded in theories of fluid mechanics, rheology, and solid-liquid two-phase flow. The study explored the impact patterns and locations of wear induced by coarse particles on filling elbow pipes.

View Article and Find Full Text PDF

Cohesion can dramatically affect the flow of granular media. In this Letter, thanks to a cohesion-controlled granular material, we propose to investigate experimentally the effect of the cohesion on the discharge from a silo. We use two geometries, a cylindrical silo and a thin rectangular silo, with an adjustable bottom to control the size of the orifice.

View Article and Find Full Text PDF

An efficient battery pack-level thermal management system was crucial to ensuring the safe driving of electric vehicles. To address the challenges posed by insufficient heat dissipation in traditional liquid cooled plate battery packs and the associated high system energy consumption. This study proposes three distinct channel liquid cooling systems for square battery modules, and compares and analyzes their heat dissipation performance to ensure battery safety during high-rate discharge.

View Article and Find Full Text PDF

Myoblasts are defined as stem cells containing skeletal muscle cell precursors. However, there are some challenges associated with the purification of myoblast samples, including long culture times and ease of bacterial contamination. In this study, we propose a microfluidic myoblast cell enrichment and purification platform based on the principle of deterministic lateral displacement (DLD).

View Article and Find Full Text PDF

Objective: Microfluidics has emerged as a promising technique to prepare nanoparticles. However, the current microfluidic devices are mainly chip-based and are often integrated into expensive systems that lack on-the-spot versatility. The aim of this study was to set up a modular microfluidic system based on low-cost capillaries and reusable, easy-to-clean building blocks that can prepare poly(D,L-lactic-co-glycolic acid) (PLGA) nanoparticles with and without incorporated water-soluble biomacromolecules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!