High-throughput phenotyping serves as a framework to reduce chronological costs and accelerate breeding cycles. In this study, we developed models to estimate the phenotypes of biomass-related traits in soybean () using unmanned aerial vehicle (UAV) remote sensing and deep learning models. In 2018, a field experiment was conducted using 198 soybean germplasm accessions with known whole-genome sequences under 2 irrigation conditions: drought and control. We used a convolutional neural network (CNN) as a model to estimate the phenotypic values of 5 conventional biomass-related traits: dry weight, main stem length, numbers of nodes and branches, and plant height. We utilized manually measured phenotypes of conventional traits along with RGB images and digital surface models from UAV remote sensing to train our CNN models. The accuracy of the developed models was assessed through 10-fold cross-validation, which demonstrated their ability to accurately estimate the phenotypes of all conventional traits simultaneously. Deep learning enabled us to extract features that exhibited strong correlations with the output (i.e., phenotypes of the target traits) and accurately estimate the values of the features from the input data. We considered the extracted low-dimensional features as phenotypes in the latent space and attempted to annotate them based on the phenotypes of conventional traits. Furthermore, we validated whether these low-dimensional latent features were genetically controlled by assessing the accuracy of genomic predictions. The results revealed the potential utility of these low-dimensional latent features in actual breeding scenarios.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11382017 | PMC |
http://dx.doi.org/10.34133/plantphenomics.0244 | DOI Listing |
Sci Rep
January 2025
Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang, 212013, China.
Soil salinization is the most prevalent form of land degradation in arid, semi-arid, and coastal regions of China, posing significant challenges to local crop yield, economic development, and environmental sustainability. However, limited research exists on estimating soil salinity at different depths under vegetation cover. This study employed field-controlled soil experiments to collect multi-source remote sensing data on soil salt content (SSC) at varying depths beneath barley growth.
View Article and Find Full Text PDFSci Rep
January 2025
School of Mechanical and Electrical Engineering, China University of Petroleum Huadong, Qingdao, 266580, China.
Global climate change has triggered frequent extreme weather events, leading to a significant increase in the frequency and intensity of forest fires. Traditional fire monitoring methods such as manual inspections, sensor technologies, and remote sensing satellites have limitations. With the advancement of drone technology and deep learning, using drones combined with artificial intelligence for fire monitoring has become mainstream.
View Article and Find Full Text PDFPLoS One
January 2025
Colleage of Computer Science and Engineering, Chongqing University of Technology, Chongqing, China.
Target tracking techniques in the UAV perspective utilize UAV cameras to capture video streams and identify and track specific targets in real-time. Deep learning UAV target tracking methods based on the Siamese family have achieved significant results but still face challenges regarding accuracy and speed compatibility. In this study, in order to refine the feature representation and reduce the computational effort to improve the efficiency of the tracker, we perform feature fusion in deep inter-correlation operations and introduce a global attention mechanism to enhance the model's field of view range and feature refinement capability to improve the tracking performance for small targets.
View Article and Find Full Text PDFIntegr Environ Assess Manag
January 2025
Ionian Department, University of Bari Aldo Moro, Bari, Italy.
Fugitive or diffuse methane emissions constitute an important source of damage to the environment, much greater even than CO2 both over a time span of 20 years and over a longer time span of 100. It is therefore of preeminent importance to undertake all the efforts necessary to implement new tools, protocols, and methods that contribute to the identification and measurement of these emissions to implement site-specific actions of mitigation, repair, and conscious management of the emitting plants. Among the remote sensing and leak detection technologies currently used, the tunable diode laser absorption spectroscopy (TDLAS) method plays a relevant role.
View Article and Find Full Text PDFSci Data
January 2025
Centre for Automation and Robotics (CAR), Spanish National Research Council (CSIC), 28006, Madrid, Spain.
This study highlights the vital role of high-resolution (HR), open-source land cover maps for food security, land use planning, and environmental protection. The scarcity of freely available HR datasets underscores the importance of multi-spectral HR aerial images. We used unmanned aerial vehicle (UAV) to capture images for a centimeter-level orthomosaics, facilitating advanced remote sensing and spatial analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!