A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

EVA implants for controlled drug delivery to the inner ear. | LitMetric

This study evaluated the potential of poly(ethylene vinyl acetate) (EVA) copolymers as matrix formers in miniaturised implants, allowing to achieve controlled drug delivery into the inner ear. Due to the blood-cochlea barrier, it is impossible to reliably deliver a drug to this tiny and highly sensitive organ in clinical practice. To overcome this bottleneck, different EVA implants were prepared by hot melt extrusion, altering the vinyl acetate content and implant diameter. Dexamethasone was incorporated as a drug with anti-inflammatory and anti-fibrotic activity. Its release was measured into artificial perilymph, and the systems were thoroughly characterised before and after exposure to the medium by optical and scanning electron microscopy, SEM-EDX analysis, DSC, X-ray powder diffraction, X-ray microtomography and texture analysis. Notably, the resulting drug release rates were much higher than from -based implants of similar size. Furthermore, varying the vinyl acetate content allowed for adjusting the desired release patterns effectively: With decreasing vinyl acetate content, the crystallinity of the copolymer increased, and the release rate decreased. Interestingly, the drug was homogeneously distributed as tiny crystals throughout the polymeric matrices. Upon contact with aqueous fluids, water penetrates the implants and dissolves the drug, which subsequently diffuses out of the device. Importantly, no noteworthy system swelling or shrinking was observed for up to 10 months upon exposure to the release medium, irrespective of the EVA grade. Also, the mechanical properties of the implants can be expected to allow for administration into the inner ear of a patient, being neither too flexible nor too rigid.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11381462PMC
http://dx.doi.org/10.1016/j.ijpx.2024.100271DOI Listing

Publication Analysis

Top Keywords

vinyl acetate
16
inner ear
12
acetate content
12
eva implants
8
controlled drug
8
drug delivery
8
delivery inner
8
drug
7
implants
5
release
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!