Orthorhombic perovskite GdFeO nanostructures are promising materials with multiferroic properties. In this study, a new low-temperature plasma-assisted approach is developed via dual anodic dissolution of solid metallic precursors for the preparation of perovskite GdFeO nanoparticles (NPs) that can be collected both as colloids as well as deposited as a thin film on a substrate. Two solid metallic foils of Gd and Fe are used as precursors, adding to the simplicity and sustainability of the method. The formation of the orthorhombic perovskite GdFeO phase is supported by high-resolution transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Raman measurements, while a uniform elemental distribution of Gd, Fe, and O is confirmed by energy dispersive X-ray spectroscopy, proving the successful preparation of ternary compound NPs. The magnetic properties of the NPs show zero remnant magnetization typical of antiferromagnetic materials, and saturation at high fields that can be caused by spin interaction between Gd and Fe magnetic sublattices. The formation mechanism of ternary compound NPs in this novel plasma-assisted method is also discussed. This method is also modified to demonstrate the direct one-step deposition of thin films, opening up opportunities for their future applications in the fabrication of magnetic memory devices and gas sensors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smtd.202400481 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!