AI Article Synopsis

  • Surgery often leaves behind residual tumor tissue, which can lead to recurrence and a reduced quality of life for patients, highlighting the need for effective postoperative treatment options.
  • Injectable in situ-forming hydrogels are being studied as a promising method to deliver therapeutic agents directly to the surgical site, forming a gel that conforms to the area and provides targeted treatment.
  • This paper reviews the advancements in these hydrogels, exploring their materials, applications in various tumors, and the challenges and future prospects for their clinical use.

Article Abstract

The unavoidable residual tumor tissue from surgery and the strong aggressiveness of tumor cells pose challenges to the postoperative treatment of tumor patients, accompanied by in situ tumor recurrence and decreased quality of life. Therefore, there is an urgent need to explore appropriate postoperative therapeutic strategies to remove residual tumor cells after surgery to inhibit tumor recurrence and metastasis after surgery. In recent years, with the rapid development of biomedical materials, the study of local delivery systems as postoperative delivery of therapeutic agents has gradually attracted the attention of researchers. Injectable in situ-forming hydrogel is a locally administered agent injected in situ as a solution that can be loaded with various therapeutic agents and rapidly gels to form a semi-solid gel at the treatment site. This type of hydrogel tightly fills the surgical site and covers irregular excision surfaces. In this paper, we review the recent advances in the application of injectable in situ-forming hydrogels in postoperative therapy, focusing on the matrix materials of this type of hydrogel and its application in the postoperative treatment of different types of tumors, as well as discussing the challenges and prospects of its clinical application.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11389645PMC
http://dx.doi.org/10.1080/10717544.2024.2400476DOI Listing

Publication Analysis

Top Keywords

injectable situ-forming
12
tumor recurrence
12
situ-forming hydrogels
8
residual tumor
8
tumor cells
8
postoperative treatment
8
therapeutic agents
8
type hydrogel
8
tumor
7
postoperative
6

Similar Publications

An injectable in situ-forming hydrogel with self-activating genipin-chitosan (GpCS) cross-linking and an O/Ca self-supplying capability for wound healing and rapid hemostasis.

Carbohydr Polym

March 2025

Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan; International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan. Electronic address:

Severe traumatic bleeding and chronic diabetic wounds require rapid hemostasis and multifunctional dressings, which remain particularly challenging, especially for non-compressible trauma and irregular wounds with dysregulated microenvironments. Chitosan (CS) can be easily cross-linked with genipin to form GpCS hydrogels. However, developing injectable GpCS hydrogels for biomedical applications faces challenges, particularly in enhancing rapid gel formation and optimizing physical properties.

View Article and Find Full Text PDF

Conventional drug formulations release active pharmaceutical ingredients (APIs) immediately after administration, while long-acting (LA) drug products are designed for prolonged therapeutic effects, thereby reducing administration frequency and improving patient compliance. The development of LA therapeutics for chronic disease treatment has significantly helped patients adhere to their regimens, reducing the need for daily doses and easing the burden on healthcare systems. Advances in treatment have transformed Human Immunodeficiency Virus (HIV) into a manageable chronic disease, and efforts are underway to eliminate HIV in the future.

View Article and Find Full Text PDF

Long-acting injectable in situ forming implants: Impact of polymer attributes and API.

Int J Pharm

December 2024

Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA. Electronic address:

Poly(DL-lactide-co-glycolide) (PLGA) and N-methyl-2-pyrrolidone (NMP)-based in situ forming implants are liquid formulations that solidify through phase separation following injection into the body. Drug is dissolved or suspended in the final formulation liquid prior to injection. Depending on the polymers used, the depots formed can deliver drug over different periods of time.

View Article and Find Full Text PDF

D-peptide hydrogels as a long-acting multipurpose drug delivery platform for combined contraception and HIV prevention.

J Control Release

January 2025

School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, Northern Ireland BT9 7BL, United Kingdom. Electronic address:

Article Synopsis
  • New multipurpose prevention technologies for women prioritize reducing HIV risks and preventing unwanted pregnancies, promoting greater sexual health choices.
  • A novel long-acting injectable platform combines the HIV drug MIV-150 and the contraceptive etonogestrel using a specially designed D-peptide that forms a drug-releasing hydrogel after injection.
  • The technology shows promising biostability, low toxicity, and sustained delivery of both drugs in animal models for nearly 50 days, indicating its potential for effective long-term use.
View Article and Find Full Text PDF

Proteins, inherently biocompatible and biodegradable, face a challenge in forming stable hydrogels without external chemical crosslinkers. Here, we construct a ring-shaped trimeric SpyTag-fused Proliferating Cell Nuclear Antigen Protein (ST-PCNA) as a core protein building block, and a dumbbell-shaped tandem dimeric SpyCatcher (SC-SC) as a bridging component. Self-crosslinked PCNA/SC-SC Protein (2SP) hydrogels are successfully formed by simply mixing the solutions of ST-PCNA and SC-SC, without chemical crosslinkers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!