AI Article Synopsis

  • Neuropathic pain (NP) is a challenging condition that can occur after spinal cord injury (SCI), and this study investigates the brain area called the periaqueductal gray (PAG) and how it relates to NP development using resting-state functional MRI (rsfMRI).
  • The research involved 20 participants: 10 SCI patients (with and without NP) and 10 healthy controls, examining differences in functional connectivity (FC) between the PAG and other brain regions.
  • Findings revealed decreased FC in SCI patients with NP compared to healthy controls and increased FC in other areas when compared to SCI patients without NP, suggesting significant brain connectivity alterations linked to neuropathic pain after spinal cord injury.

Article Abstract

Background And Purpose: Neuropathic pain (NP) is a debilitating condition following spinal cord injury (SCI). The role of periaqueductal gray (PAG) in NP development following SCI remains underexplored. Using resting-state functional MRI (rsfMRI), our study aimed to demonstrate the alterations in functional connectivity (FC) of PAG in NP following SCI.

Methods: Ten SCI patients (SCI + NP, n = 7, and SCI - NP, n = 3), alongside 10 healthy controls (HCs), were enrolled. rsfMRI was conducted followed by seed-to-voxel analysis using PAG as the seed region and then group-based analysis comprising three groups (SCI + NP, SCI - NP, and HC). Age and gender were considered as confounding variables.

Results: Compared to HCs, SCI + NP demonstrated decreased FC between PAG and right insula, right frontal orbital cortex, right pallidum, dorsal raphe nucleus (DRN), red nuclei (RN), substantia nigra (SN), and ventral posterolateral (VPL) thalamic nuclei. Compared to SCI - NP, SCI + NP demonstrated increased FC between PAG and posterior cingulate cortex (PCC), hippocampus, cerebellar vermis lobules IV and V, and thalamic structures (posterior and lateral pulvinar, the mediodorsal nuclei, and the ventral lateral nuclei). Additionally, decreased FC between the PAG and VPL, geniculate bodies, intralaminar nuclei of thalamus, DRN, RN, SN, and prefrontal cortex was observed in this comparison.

Conclusions: Altered FC between PAG and right anterior insula, VPL, DRN, RN, SN, cerebellar vermis lobules IV and V, frontal cortex, and PCC was associated with NP sequelae of SCI. Additionally, SCI was independently associated with decreased FC between PAG and right posterior insula, cerebellar lobules IV and V, and cerebellar vermis lobules III, IV, and V.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jon.13237DOI Listing

Publication Analysis

Top Keywords

decreased pag
12
cerebellar vermis
12
vermis lobules
12
periaqueductal gray
8
spinal cord
8
neuropathic pain
8
pag
8
sci + np demonstrated
8
pag posterior
8
cortex pcc
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!