Efficient field enhancement effects through plasmonic chemistry for ultrasensitive biosensing still face a great challenge. Herein, nanoconfinement engineering accumulation and synergistic effects are used to develop a "plasmonic storms" strategy with a high field enhancement effect, and gold nanoparticles (AuNPs) are used as active sites for a proof of concept because of their distinctive localized surface plasmon resonance and neighborly coupled electromagnetic field. Briefly, a large number of AuNPs are selectively and accurately stacked in the confined nanocavity of the bowl-like nanostructure through an in situ-synthesized strategy, which provides a space for strong coupling of electromagnetic fields between these adjacent AuNPs, forming "plasmonic storms" with an enhanced field that is 3 orders of magnitude higher than that of free AuNPs. The proposed nanoconfinement-engineered "plasmonic storms" are demonstrated by surface-enhanced Raman scattering (SERS) and photothermal experiments and theoretically visualized by finite element simulation. Finally, the proposed "plasmonic storms" are used for enhanced colorimetric/SERS/photothermal immunochromatographic assay to detect with the help of a machine learning algorithm, achieving a low limit of detection of 142 CFU mL, highlighting the potential of nanoconfinement in biosensing.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.4c03417DOI Listing

Publication Analysis

Top Keywords

"plasmonic storms"
20
immunochromatographic assay
8
field enhancement
8
storms" enhanced
8
"plasmonic
5
storms"
5
asymmetric nanobowl
4
nanobowl confinement-engineered
4
confinement-engineered "plasmonic
4
storms" machine
4

Similar Publications

Efficient field enhancement effects through plasmonic chemistry for ultrasensitive biosensing still face a great challenge. Herein, nanoconfinement engineering accumulation and synergistic effects are used to develop a "plasmonic storms" strategy with a high field enhancement effect, and gold nanoparticles (AuNPs) are used as active sites for a proof of concept because of their distinctive localized surface plasmon resonance and neighborly coupled electromagnetic field. Briefly, a large number of AuNPs are selectively and accurately stacked in the confined nanocavity of the bowl-like nanostructure through an in situ-synthesized strategy, which provides a space for strong coupling of electromagnetic fields between these adjacent AuNPs, forming "plasmonic storms" with an enhanced field that is 3 orders of magnitude higher than that of free AuNPs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!