Background: Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes and nemaline myopathy are two rare genetic conditions. We report the first case reported in world literature with coexistence of both these rare disorders.
Case Presentation: A 11-year-old previously healthy Sri Lankan male child, product of a nonconsanguineous marriage with normal development presented with acute onset short lasting recurring episodes of right-sided eye deviation with impaired consciousness. In between episodes he regained consciousness. Family history revealed a similar presentation in the mother at 36 years of age. Examination was significant for short stature and proximal upper and lower limb weakness. His plasma and cerebrospinal fluid lactate were elevated. Magnetic resonance imaging brain had evidence of an acute infarction in the right occipital territory. Sanger sequencing for common mitochondrial variants of mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes confirmed this diagnosis. Whole exome sequencing revealed pathogenic compound heterozygous variants in NEB gene implicating in coexisting nemaline myopathy. Acute presentation was managed with supportive care, antiepileptics, and mitochondrial supplementation. Currently he is stable on daily supplementation of arginine and limb-strengthening physiotherapy. He is being monitored closely clinically and with serum lactate level.
Conclusion: Genetic diseases are rare. Coexistence of two genetic conditions is even rarer. Genetic confirmation of diagnosis is imperative for prediction of complications, accurate management, and genetic counseling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11385988 | PMC |
http://dx.doi.org/10.1186/s13256-024-04723-9 | DOI Listing |
Front Neurol
December 2024
Department of Neurology, Tianjin Huanhu Hospital, Nankai University, Tianjin, China.
Background: MELAS (Mitochondrial Encephalomyopathy, Lactic Acidosis, and Stroke-like episodes) is a common subtype of mitochondrial encephalomyopathy. However, few studies have explored the relationship between biochemical markers and prognosis. This study aimed to explore the relationship between clinical and biochemical markers and prognosis of patients with MELAS.
View Article and Find Full Text PDFJ Dig Dis
December 2024
Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.
The median age of patients at diagnosis of mitochondrial neurogastrointestinal encephalomyopathy was 25 years. The most common neurological symptoms were leukoencephalopathy (83.1%), polyneuropathy (68.
View Article and Find Full Text PDFActa Pharmacol Sin
December 2024
Laboratory of Biochemistry, Structural and Molecular Biology, Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", 70125, Bari, Italy.
Carnitine O-acetyltransferase (CRAT) is a crucial enzyme involved in mitochondrial energy metabolism. Alterations in CRAT activity have emerged as significant contributors to the pathogenesis of Leigh syndrome and related mitochondrial disorders. In this study we employed an integrated approach combining in silico docking analysis and virtual screening of chemical libraries with subsequent in vitro validation to identify small molecule modulators of the activity of the wild type (WT) CRAT and the p.
View Article and Find Full Text PDFAutophagy
December 2024
Department of Cell and Developmental Biology and Consortium for Mitochondrial Research, UCL, London, UK.
Mitochondrial DNA (mtDNA) encodes genes essential for oxidative phosphorylation. The m.3243A>G mutation causes severe disease, including myopathy, lactic acidosis and stroke-like episodes (MELAS) and is the most common pathogenic mtDNA mutation in humans.
View Article and Find Full Text PDFAnn Hum Genet
November 2024
Division of Genetics, Narayana Hrudayalaya Hospitals/Mazumdar-Shaw Medical, Centre, Bangalore, Karnataka, India.
Introduction: Combined oxidative phosphorylation (OXPHOS) deficiency 44 (COXPD44; MIM# 618855) is caused by biallelic pathogenic variants in FAS-activated serine-threonine kinase domain 2 (FASTKD2) (MIM# 612322). COXPD44 is characterized by variable clinical features-developmental delay, chronic epileptic encephalopathy, seizure disorder/status epilepticus and cerebellar ataxia. We ascertained one sib with episodic acute encephalomyopathy triggered by acute gastroenteritis and associated with haematological abnormalities, rhabdomyolysis leading to acute kidney injury, hypotensive shock leading to early death and a similarly affected sib with early death.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!