Background: Visceral adipose tissue in individuals with obesity is an independent cardiovascular risk indicator. However, it remains unclear whether adipose tissue influences common cardiovascular diseases, such as atherosclerosis, through its secreted exosomes.

Methods: The exosomes secreted by adipose tissue from diet-induced obesity mice were isolated to examine their impact on the progression of atherosclerosis and the associated mechanism. Endothelial apoptosis and the proliferation and migration of vascular smooth muscle cells (VSMCs) within the atherosclerotic plaque were evaluated. Statistical significance was analyzed using GraphPad Prism 9.0 with appropriate statistical tests.

Results: We demonstrate that adipose tissue-derived exosomes (AT-EX) exacerbate atherosclerosis progression by promoting endothelial apoptosis, proliferation, and migration of VSMCs within the plaque in vivo. MicroRNA-132/212 (miR-132/212) was detected within AT-EX cargo. Mechanistically, miR-132/212-enriched AT-EX exacerbates palmitate acid-induced endothelial apoptosis via targeting G protein subunit alpha 12 and enhances platelet-derived growth factor type BB-induced VSMC proliferation and migration by targeting phosphatase and tensin homolog in vitro. Importantly, melatonin decreases exosomal miR-132/212 levels, thereby mitigating the pro-atherosclerotic impact of AT-EX.

Conclusion: These data uncover the pathological mechanism by which adipose tissue-derived exosomes regulate the progression of atherosclerosis and identify miR-132/212 as potential diagnostic and therapeutic targets for atherosclerosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11386123PMC
http://dx.doi.org/10.1186/s12933-024-02404-xDOI Listing

Publication Analysis

Top Keywords

adipose tissue-derived
12
tissue-derived exosomes
12
adipose tissue
12
endothelial apoptosis
12
proliferation migration
12
atherosclerosis progression
8
progression atherosclerosis
8
apoptosis proliferation
8
adipose
6
atherosclerosis
6

Similar Publications

Background/aim: This study aimed to investigate the safety and efficacy of deferoxamine (DFO) pretreated feline adipose tissue derived mesenchymal stem cells (fATMSCs) for the treatment of inflammatory disorders.

Materials And Methods: fATMSCs were isolated from feline adipose tissue and characterized using flow cytometry for surface marker expression and differentiation assays for adipogenic, osteogenic, and chondrogenic lineages. Different concentrations of DFO were used to evaluate its impact on fATMSC activity.

View Article and Find Full Text PDF

Omentin-1 mitigates non-alcoholic fatty liver disease by preserving autophagy through AMPKα/mTOR signaling pathway.

Sci Rep

December 2024

Department of Gastroenterology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, 330006, China.

Adipose tissue-derived adipokines facilitate inter-organ communication between adipose tissue and other organs. Omentin-1, an adipokine, has been implicated in the regulation of glucose and insulin metabolism. However, limited knowledge exists regarding the regulatory impact of endogenous omentin-1 on hepatic steatosis.

View Article and Find Full Text PDF

This work presents strong evidence supporting the use of decellularized human iliac arteries combined with adipose tissue-derived stem cells (hASCs) as a promising alternative for vascular tissue engineering, opening the path to future treatments for peripheral artery disease (PAD). PAD is a progressive condition with high rates of amputation and mortality due to ischemic damage and limited graft options. Traditional synthetic grafts often fail due to poor integration, while autologous grafts may be unsuitable for patients with compromised vascular health.

View Article and Find Full Text PDF

Background: Mesenchymal stem cells may have neuroprotective and tissue regenerative capabilities and the potential to rescue retinal degeneration in chorioretinal diseases including myopic chorioretinal atrophy. Transplantation of human (allogeneic) adipose tissue-derived mesenchymal stem cell (adMSC) suspensions has been clinically conducted to treat retinal degenerative diseases. However, serious side effects including proliferative vitreoretinopathy and epiretinal membrane formation have been reported.

View Article and Find Full Text PDF

Introduction: Sublingual immunotherapy (SLIT) is an effective and injection-free route for allergen-specific immunotherapy (AIT). Mesenchymal stromal/stem cell (MSC)-derived exosomes (Exo) has been identified as a novel delivery platform with immunomodulatory capacities. In addition, targeting agents such as aptamers (Apt) have been extensively used for specific delivery approaches such as direct delivery of allergen formulations to dendritic cells (DC) to improve the efficacy of specific immunotherapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!