Halophilic archaea are a unique group of microorganisms that thrive in high-salt environments, exhibiting remarkable adaptations to survive extreme conditions. Archaeological wood and El-Hamra Lake serve as a substrate for a diverse range of microorganisms, including archaea, although the exact role of archaea in archaeological wood biodeterioration remains unclear. The morphological and chemical characterizations of archaeological wood were evaluated using FTIR, SEM, and EDX. The degradation of polysaccharides was identified in Fourier transform infrared analysis (FTIR). The degradation of wood was observed through scanning electron microscopy (SEM). The energy dispersive X-ray spectroscopy (EDX) revealed the inclusion of minerals, such as calcium, silicon, iron, and sulfur, into archaeological wood structure during burial and subsequent interaction with the surrounding environment. Archaea may also be associated with detected silica in archaeological wood since several organosilicon compounds have been found in the crude extracts of archaeal cells. Archaeal species were isolated from water and sediment samples from various sites in El-Hamra Lake and identified as Natronococcus sp. strain WNHS2, Natrialba hulunbeirensisstrain WNHS14, Natrialba chahannaoensis strain WNHS9, and Natronococcus occultus strain WNHS5. Additionally, three archaeal isolates were obtained from archaeological wood samples and identified as Natrialba chahannaoensisstrain W15, Natrialba chahannaoensisstrain W22, and Natrialba chahannaoensisstrain W24. These archaeal isolates exhibited haloalkaliphilic characteristics since they could thrive in environments with high salinity and alkalinity. Crude extracts of archaeal cells were analyzed for the organic compounds using gas chromatography-mass spectrometry (GC-MS). A total of 59 compounds were identified, including free saturated and unsaturated fatty acids, saturated fatty acid esters, ethyl and methyl esters of unsaturated fatty acids, glycerides, phthalic acid esters, organosiloxane, terpene, alkane, alcohol, ketone, aldehyde, ester, ether, and aromatic compounds. Several organic compounds exhibited promising biological activities. FTIR spectroscopy revealed the presence of various functional groups, such as hydroxyl, carboxylate, siloxane, trimethylsilyl, and long acyl chains in the archaeal extracts. Furthermore, the archaeal extracts exhibited antioxidant effects. This study demonstrates the potential of archaeal extracts as a valuable source of bioactive compounds with pharmaceutical and biomedical applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11385181PMC
http://dx.doi.org/10.1038/s41598-024-70411-9DOI Listing

Publication Analysis

Top Keywords

archaeological wood
28
extracts archaeal
12
natrialba chahannaoensisstrain
12
archaeal extracts
12
wood
8
el-hamra lake
8
crude extracts
8
archaeal
8
archaeal cells
8
archaeal isolates
8

Similar Publications

Following European exploration of the Americas in the late 15th century, new plants rapidly spread across Europe. Simultaneously, plants from Asia and Africa arrived. Initially, they were grown in ornamental gardens but later became integral to major production centres, significantly transforming European agriculture.

View Article and Find Full Text PDF

The characterization of lignocellulosic biomass present in archaeological wood is crucial for understanding the degradation processes affecting wooden artifacts. The lignocellulosic fractions in both the external and internal parts of Moroccan archaeological cedar wood (9th, 12th, and 21st centuries) were characterized using infrared spectroscopy (FTIR-ATR deconvolution mode), X-ray diffraction (XRD), and SEM analysis. The XRD demonstrates a significant reduction in the crystallinity index of cellulose from recent to aging samples.

View Article and Find Full Text PDF

Early human collective practices and symbolism in the Early Upper Paleolithic of Southwest Asia.

Proc Natl Acad Sci U S A

December 2024

The Shmunis Family Anthropology Institute, Dan David Center for Human Evolution and Biohistory Research, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel.

Article Synopsis
  • Identifying Paleolithic communal rituals helps understand group identity and cohesion.
  • Evidence shows that collective rituals took place in Manot Cave during the Early Upper Paleolithic, centered around an engraved boulder resembling a tortoise.
  • Analyses of artifacts and cave acoustics indicate fire was used for illumination, and the site was ideal for gatherings, stressing its role in social networking among EUP communities.
View Article and Find Full Text PDF

Research on ancient adhesives from the South African Stone Age is expanding, driven by excellent preservation conditions of adhesives and the potential to address diverse archaeological questions. These adhesives are primarily characterized through microscopic and chemical analysis. Despite geographic variability, a consistently identified component is Podocarpus resin or tar.

View Article and Find Full Text PDF

Chemical, physical, and biological decay may partially or totally hide the historical and technological information carried by waterlogged wood. Investigation of the above-mentioned decay processes is essential to assess the wood preservation state, and it is important to find new methods for the consolidation and safeguarding of wooden archaeological heritage. A conventional method for assessing the wood preservation state is light microscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!