Fructose 1,6-bisphosphatase 2 (Fbp2) is a regulatory enzyme of gluco- and glyconeogenesis which, in the course of evolution, acquired non-catalytic functions. Fbp2 promotes cell survival during calcium stress, regulates glycolysis via inhibition of Hif-1α activity, and is indispensable for the formation of long-term potentiation in hippocampus. In hippocampal astrocytes, the amount of Fbp2 protein is reduced by signals delivered in neuronal extracellular vesicles (NEVs) through an unknown mechanism. The physiological role of Fbp2 (determined by its subcellular localization/interactions) depends on its oligomeric state and thus, we asked whether the cargo of NEVs is sufficient to change also the ratio of Fbp2 dimer/tetramer and, consequently, influence astrocyte basal metabolism. We found that the NEVs cargo reduced the Fbp2 mRNA level, stimulated the enzyme degradation and affected the cellular titers of different oligomeric forms of Fbp2. This was accompanied with increased glucose uptake and lactate release by astrocytes. Our results revealed that neuronal signals delivered to astrocytes in NEVs provide the necessary balance between enzymatic and non-enzymatic functions of Fbp2, influencing not only its amount but also subcellular localization. This may allow for the metabolic adjustments and ensure protection of mitochondrial membrane potential during the neuronal activity-related increase in astrocytic [Ca].

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11385182PMC
http://dx.doi.org/10.1038/s41598-024-71560-7DOI Listing

Publication Analysis

Top Keywords

neuronal extracellular
8
extracellular vesicles
8
oligomeric state
8
fructose 16-bisphosphatase
8
fbp2
8
functions fbp2
8
signals delivered
8
neuronal
4
vesicles influence
4
influence expression
4

Similar Publications

Veratridine Induces Vasorelaxation in Mouse Cecocolic Mesenteric Arteries.

Toxins (Basel)

December 2024

Univ. Angers, INSERM, CNRS, MITOVASC, Equipe CarME, SFR ICAT, 49000 Angers, France.

The vegetal alkaloid toxin veratridine (VTD) is a selective voltage-gated Na (Na) channel activator, widely used as a pharmacological tool in vascular physiology. We have previously shown that Na channels, expressed in arteries, contribute to vascular tone in mouse mesenteric arteries (MAs). Here, we aimed to better characterize the mechanisms of action of VTD using mouse cecocolic arteries (CAs), a model of resistance artery.

View Article and Find Full Text PDF

Background: Extracellular vesicles are easily accessible in various biofluids and allow the assessment of disease-related changes in the proteome. This has made them a promising target for biomarker studies, especially in the field of neurodegeneration where access to diseased tissue is very limited. Genetic variants in the LRRK2 gene have been linked to both familial and sporadic forms of Parkinson's disease.

View Article and Find Full Text PDF

Parkinson's Disease (PD) is a progressive neurodegenerative condition, which is highly heterogeneous upon diagnosis. Brain extracellular matrix (ECM) accounts for 10-20 % of the total brain volume and is responsible for the physical organization of neuronal and glia cells. Blood-based biomarkers quantifying ECM fragments holds the potential as diagnostic and prognostic biomarkers.

View Article and Find Full Text PDF

Objective: Hypoxic-ischemic brain damage (HIBD) is a leading cause of neonatal mortality, resulting in brain injury and persistent seizures that can last into the late neonatal period and beyond. Effective treatments and interventions for infants affected by hypoxia-ischemia remain lacking. Clinical investigations have indicated an elevation of nuclear factor of activated T cells 5 (NFAT5) in whole blood from umbilical cords of severely affected HIBD infants with epilepsy.

View Article and Find Full Text PDF

In vivo self-assembled siRNAs within small extracellular vesicles attenuate LRRK2-induced neurodegeneration in Parkinson's disease models.

J Control Release

December 2024

Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China; The Second People's Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu 213003, China. Electronic address:

Rationale: Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene play an important role in Parkinson's disease (PD) pathogenesis, and downregulation of LRRK2 has become a promising therapy for PD. Here, we developed a synthetic biology strategy for the self-assembly and delivery of small interfering RNAs (siRNAs) of LRRK2 into the substantia nigra via small extracellular vesicles (sEVs) using a genetic circuit (in the form of naked DNA plasmid) to attenuate PD-like phenotypes in mouse model.

Methods: We generated the genetic circuit encoding both a neuron-targeting rabies virus glycoprotein (RVG) tag and a LRRK2 siRNA under the control of a cytomegalovirus (CMV) promoter, and assessed its therapeutic effects using LRRK2 mouse models of PD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!