Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study delves into catalytic aquathermolysis to enhance the economic viability of heavy oil production by in-situ upgrading technique. It is known that introducing nanocatalysts would promote the aquathermolysis reaction. Therefore, in this study, the effect of matrix polymer carboxyl methyl cellulose/silicate graphene oxide nanocomposites (CSG1 and CSG2) in the catalytic aquathermolysis of Egyptian heavy crude oil was studied. Characterization techniques including Fourier-transform infrared (FTIR), X-ray diffraction (XRD), Dynamic light scattering (DLS), Brunauer-Emmett-Teller (BET) surface area analysis, Scanning electron microscopy (SEM), and thermogravimetric analysis (TGA) were used to evaluate the structure of the synthesized nanocomposites. Results reveal CSG2 has higher crystallinity and superior dispersion compared to CSG1, and both exhibited a good stability in aqueous suspensions. CSG2 enriched with graphene oxide, demonstrates superior thermal stability, suitable for high-temperature applications such as catalytic aquathermolysis process. Single factor and orthogonal tests were used to assess the catalytic aquathermolysis performance of the prepared nanoparticles. The obtained results revealed that the optimum conditions to use CSG1 and CSG2 are 40% water concentration, 225 °C temperature, and 0.5 wt% catalyst percentage. Where, CSG2 showed better viscosity reduction (82%) compared to CSG1 (62%), highlighting its superior performance in reducing the viscosity of heavy oil. Numerical results from SARA analysis, gas chromatography, and rheological testing confirmed the catalytic aquathermolysis's efficacy in targeting asphaltene macromolecules and producing lighter hydrocarbon fractions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11384775 | PMC |
http://dx.doi.org/10.1038/s41598-024-70843-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!