A new conducting polymer of the cellulose acetate poly acrylonitrile (CAPA)-SiC composite was produced using an in situ oxidative polymerization technique in an aqueous medium. SiC was synthesized from Cinachyrella sp. as a source of carbon and silicon at 1200 °C under an argon atmosphere via a catalytic reduction process. The structure and morphology of the CAPA-SiC composite were characterized using surface area studies (BET), X-ray diffraction (XRD), Fourier transformation infrared spectroscopy (FT-IR), and surface morphology (SEM & TEM). To protect copper, the produced CAPA-SiC composite was mixed with commercial epoxy paint using a casting technique, and the copper surface was coated with the three components of the CAPA-SiC/epoxy paint mixture. The corrosion inhibition improvement of the CAPA-SiC/paint coating was assessed using electrochemical impedance spectroscopy followed by Tafel polarization measurements in a 3.5 wt% NaCl solution. The corrosion protection ability of the CAPA-SiC/epoxy coating was found to be outstanding at 97.4% when compared to that of a CAPA/paint coating. SEM and XRD were used to illustrate the coating on the copper surface.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11385227 | PMC |
http://dx.doi.org/10.1038/s41598-024-70166-3 | DOI Listing |
Sci Rep
September 2024
Environmental Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, Alexandria, Egypt.
A new conducting polymer of the cellulose acetate poly acrylonitrile (CAPA)-SiC composite was produced using an in situ oxidative polymerization technique in an aqueous medium. SiC was synthesized from Cinachyrella sp. as a source of carbon and silicon at 1200 °C under an argon atmosphere via a catalytic reduction process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!