Silicon photonic microresonator-based high-resolution line-by-line pulse shaping.

Nat Commun

School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA.

Published: September 2024

Optical pulse shaping stands as a formidable technique in ultrafast optics, radio-frequency photonics, and quantum communications. While existing systems rely on bulk optics or integrated platforms with planar waveguide sections for spatial dispersion, they face limitations in achieving finer (few- or sub-GHz) spectrum control. These methods either demand considerable space or suffer from pronounced phase errors and optical losses when assembled to achieve fine resolution. Addressing these challenges, we present a foundry-fabricated six-channel silicon photonic shaper using microresonator filter banks with inline phase control and high spectral resolution. Leveraging existing comb-based spectroscopic techniques, we devise a system to mitigate thermal crosstalk and enable the versatile use of our on-chip shaper. Our results demonstrate the shaper's ability to phase-compensate six comb lines at tunable channel spacings of 3, 4, and 5 GHz. Specifically, at a 3 GHz channel spacing, we showcase the generation of arbitrary waveforms in the time domain. This scalable design and control scheme holds promise in meeting future demands for high-precision spectral shaping capabilities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11384782PMC
http://dx.doi.org/10.1038/s41467-024-52051-9DOI Listing

Publication Analysis

Top Keywords

silicon photonic
8
pulse shaping
8
photonic microresonator-based
4
microresonator-based high-resolution
4
high-resolution line-by-line
4
line-by-line pulse
4
shaping optical
4
optical pulse
4
shaping stands
4
stands formidable
4

Similar Publications

In this study, we present an ultrasensitive and specific multiplexed detection method for SARS-CoV-2 and influenza (Flu) utilizing CRISPR/Cas13a technology combined with a hydrogel-encapsulated photonic crystal (PhC) barcode integrated with hybridization chain reaction (HCR). The barcodes, characterized by core-shell structures, are fabricated through partial replication of periodically ordered hexagonally close-packed silicon dioxide beads. Consequently, the opal hydrogel shell of these barcodes features abundant interconnected pores that provide a substantial surface area for probe immobilization.

View Article and Find Full Text PDF

The development of an efficient and durable photoelectrode is critical for achieving large-scale applications in photoelectrochemical water splitting. Here, we report a unique photoelectrode composed of reconfigured gallium nitride nanowire-on-silicon wafer loaded with Au nanoparticles as cocatalyst that achieved an impressive applied bias photon-to-current efficiency of 10.36% under AM 1.

View Article and Find Full Text PDF

Manipulating Fano Coupling in an Opto-Thermoelectric Field.

Adv Sci (Weinh)

January 2025

Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA.

Fano resonances in photonics arise from the coupling and interference between two resonant modes in structures with broken symmetry. They feature an uneven and narrow and tunable lineshape and are ideally suited for optical spectroscopy. Many Fano resonance structures have been suggested in nanophotonics over the last ten years, but reconfigurability and tailored design remain challenging.

View Article and Find Full Text PDF

Correlated photon-pair sources are key components for quantum computing, networking, synchronization, and sensing applications. Integrated photonics has enabled chip-scale sources using nonlinear processes, producing high-rate time-energy and polarization entanglement at telecom wavelengths with sub-100 microwatt pump power. Many quantum systems operate in the visible or near-infrared ranges, necessitating visible-telecom entangled-pair sources for connecting remote systems via entanglement swapping and teleportation.

View Article and Find Full Text PDF

Effective engineering of nanostructured materials provides a scope to explore the underlying photoelectric phenomenon completely. A simple cost-effective chemical reduction route is taken to grow nanoparticles of Cd Zn S with varying = 1, 0.7, 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!