Purpose: Standard-of-care for glioblastoma remains surgical debulking followed by temozolomide and radiation. However, many tumors become radio-resistant while radiation damages surrounding brain tissue. Novel therapies are needed to increase the effectiveness of radiation and reduce the required radiation dose. Drug candidate CBL0137 is efficacious against glioblastoma by inhibiting histone chaperone FACT, known to be involved in DNA damage repair. We investigated the combination of CBL0137 and radiation on glioblastoma.

Methods: In vitro, we combined CBL0137 with radiation on U87MG and A1207 glioblastoma cells using the clonogenic assay to evaluate the response to several treatment regimens, and the Fast Halo Assay to examine DNA repair. In vivo, we used the optimum combination treatment regimen to evaluate the response of orthotopic tumors in nude mice.

Results: In vitro, the combination of CBL0137 and radiation is superior to either alone and administering CBL0137 two hours prior to radiation, having the drug present during and for a prolonged period post-radiation, is an optimal schedule. CBL0137 inhibits DNA damage repair following radiation and affects the subcellular distribution of histone chaperone ATRX, a molecule involved in DNA repair. In vivo, one dose of CBL0137 is efficacious and the combination of CBL0137 with radiation increases median survival over either monotherapy.

Conclusions: CBL0137 is most effective with radiation for glioblastoma when present at the time of radiation, immediately after and for a prolonged period post-radiation, by inhibiting DNA repair caused by radiation. The combination leads to increased survival making it attractive as a dual therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11060-024-04819-8DOI Listing

Publication Analysis

Top Keywords

cbl0137 radiation
16
radiation
14
dna damage
12
damage repair
12
combination cbl0137
12
dna repair
12
cbl0137
10
cbl0137 efficacious
8
histone chaperone
8
involved dna
8

Similar Publications

Background: Surgery, chemotherapy, and radiation often have limited utility for advanced metastatic disease in the liver, and despite its promising activity in select cancers, PD-1 blockade therapy similarly has minimal benefit in this setting. Curaxin, CBL0137, is an experimental anti-cancer drug that disrupts the binding of DNA to histones, destabilizes chromatin, and induces Z-DNA formation which may stimulate anti-tumor immune responses.

Methods: Murine cell lines of colon (CT26) and breast (4T1) cancer were interrogated for survival and CBL0137-associated DNA changes in vitro.

View Article and Find Full Text PDF

Purpose: Standard-of-care for glioblastoma remains surgical debulking followed by temozolomide and radiation. However, many tumors become radio-resistant while radiation damages surrounding brain tissue. Novel therapies are needed to increase the effectiveness of radiation and reduce the required radiation dose.

View Article and Find Full Text PDF

Purpose: Standard-of-care for glioblastoma remains surgical debulking followed by temozolomide and radiation. However, many tumors become radio-resistant while radiation damages surrounding brain tissue. Novel therapies are needed to increase the effectiveness of radiation and reduce the required radiation dose.

View Article and Find Full Text PDF

Manipulating Radiation-Sensitive Z-DNA Conformation for Enhanced Radiotherapy.

Adv Mater

July 2024

CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.

DNA double-strand breaks (DSBs) yield highly determines radiotherapy efficacy. However, improving the inherent radiosensitivity of tumor DNA to promote radiation-induced DSBs remains a challenge. Using theoretical and experimental models, the underexplored impact of Z-DNA conformations on radiosensitivity, yielding higher DSBs than other DNA conformations, is discovered.

View Article and Find Full Text PDF

The FAcilitates Chromatin Transcription (FACT) complex: Its roles in DNA repair and implications for cancer therapy.

DNA Repair (Amst)

January 2022

Department of Pediatric, Division of Hematology/oncology, University of Nebraska Medical Center, Omaha, NE, USA 68198; Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA 68198.

Genomic DNA in the nucleus is wrapped around nucleosomes, a repeating unit of chromatin. The nucleosome, consisting of octamer of core histones, is a barrier for several cellular processes that require access to the naked DNA. The FAcilitates Chromatin Transcription (FACT), a histone chaperone complex, is involved in nucleosome remodeling via eviction or assembly of histones during transcription, replication, and DNA repair.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!