OsLec-RLK overexpression enhances cell signalling and salt stress tolerance in pigeon pea, enhancing seed yield and harvest index and thus, enabling marginal lands to increase food and nutritional security. Lectin Receptor-like kinases (Lec-RLKs) are highly effective cell signaling molecules that counteract various stresses, including salt stress. We engineered pigeon pea by overexpressing OsLec-RLK gene for enhancing salt tolerance. The OsLec-RLK overexpression lines demonstrated superior performance under salt stress, from vegetative to reproductive phase, compared to wild types (WT). The overexpression lines had significantly higher K/Na ratio than WT exposed to 100 mM NaCl. Under salt stress, transgenic lines showed higher levels of chlorophyll, proline, total soluble sugars, relative water content, and peroxidase and catalase activity than WT plants. Membrane injury index and lipid peroxidation were significantly reduced in transgenic lines. Analysis of phenological and yield attributes confirmed that the OsLec-RLK pigeon pea lines maintain plant vigor, with 10.34-fold increase in seed yield (per plant) and 4-5-fold increase in harvest index of overexpression lines, compared to wild type. Meanwhile, the overexpression of OsLec-RLK up-regulated the expression levels of histone deacetylase1, acyl CoA, ascorbate peroxidase, peroxidase, glutathione reductase and catalase, which were involved in the K/Na homeostasis pathway. This study showed the potential of OsLec-RLK gene for increasing crop productivity and yields under salt stress and enabling the crops to be grown on marginal lands for increasing food and nutritional security.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00299-024-03314-8DOI Listing

Publication Analysis

Top Keywords

salt stress
20
pigeon pea
16
seed yield
12
overexpression lines
12
lectin receptor-like
8
stress tolerance
8
oslec-rlk overexpression
8
marginal lands
8
food nutritional
8
nutritional security
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!