Invertase enzyme can effectively improve the taste, color, and durability of these products. Various methods have been proposed to increase the stability and efficiency of enzymes. One of the most important is enzyme immobilization, which can be implemented on different materials. The purpose of this study was to immobilize the invertase enzyme on the surface of green synthesized zinc oxide nanoparticles and to investigate its biochemical properties. The enzyme immobilization was confirmed by SEM and Raman spectroscopy. Then, the biochemical characteristics, such as optimal pH and temperature, thermal stability, and storage stability of free and immobilized enzymes, were determined. The results of SEM showed that the diameter of synthesized nanoparticles was about 60 ± 5 nm. FTIR of immobilized invertase confirmed the immobilization process. The immobilization efficiency was determined to be 72 %. Immobilized enzyme showed higher thermal stability at 40 and 50 °C. Immobilized enzyme could be used 8 times in optimum condition. Also, an Examination of the kinetic parameters of the immobilized enzyme compared with those of the free enzyme showed a decrease in the maximum velocity of the enzyme. It seems that the immobilized invertase has improved characteristics for application in different industries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ab.2024.115661 | DOI Listing |
Int J Biol Macromol
January 2025
College of Technology and Engineering, MPUAT, Udaipur, Rajasthan-313001, India. Electronic address:
Lipases, enzymes that perform the hydrolysis of triglycerides into fatty acids and glycerol, present a potential paradigm shift in the realms of food and detergent industries. Their enhanced efficiency, energy conservation and environmentally friendly attributes make them promising substitutes for chemical catalysts. Motivated by this prospect, this present study was targeted on the heterologous expression of a lipase gene, employing E.
View Article and Find Full Text PDFJ Pharm Biomed Anal
January 2025
School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China. Electronic address:
Acetylcholinesterase (AChE) is widely recognized as a promising therapeutic target enzyme for Alzheimer's disease (AD). The screening of AChE inhibitors (AChEIs) holds great significance for the treatment of AD. In this study, cellulose filter paper (CFP) -immobilized AChE was prepared and firstly applied to screening AChEIs from 30 % ethanol extract of Phyllanthus emblica L.
View Article and Find Full Text PDFChemSusChem
January 2025
CIC biomaGUNE, Heterogeneous Biocatalysis, Paseo Miramon 182, 20009, San Sebastian, SPAIN.
EEfficient methods for isolating N-glycans are essential to understanding the functions and characteristics of the entire N-glycome. Enzymatic release using PNGaseF is the most effective approach for releasing mammalian N-glycans for analytical purposes. However, the use of PNGaseF for preparative N-glycan isolation is precluded due to the enzyme's cost and limited stability.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China. Electronic address:
Accurate, specific, and cost-effective detection of toxic cyanogenic glycosides is crucial for ensuring biological health and food safety. In this study, a novel biosensor based on co-immobilized multi-enzyme system was constructed by artificial antibody-antigen-directed immobilization for the colorimetric detection of amygdalin through a cascade reaction catalyzed by β-glucosidase, glucose oxidase, and horseradish peroxidase. Artificial antibodies and antigens were prepared using catechol and 3,4-dihydroxybenzaldehyde, respectively, to generate mutual affinity recognition ability for enzyme immobilization.
View Article and Find Full Text PDFEnzyme Microb Technol
January 2025
Departamento de Biocatálisis, ICP-CSIC, C/Marie Curie 2, Campus UAM-CSIC, Cantoblanco, Madrid 28049, Spain. Electronic address:
Supports coated with amino-hexyl and amino octyl have been prepared from glyoxyl agarose beads and compared in their performance with octyl-agarose to immobilize lipases A and B from Candida antarctica (CALA and CALB). Immobilization courses were similar using all supports, but enzyme release was more difficult using the amino-alkyl supports suggesting a mixed interfacial activation/ionic exchange immobilization. The enzyme activity and specificity (using p-nitrophenyl propionate, triacetin and both isomers of methyl mandelate) greatly depended on the support.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!