Nesfatin-1, derived from the nucleobindin 2 (NUCB2) precursor, is a potent anorexigenic peptide that was discovered in 2006. Since its identification in the hypothalamus, it has been shown to have wide ranging actions within and outside of the central nervous system. One of these actions is the regulation of inflammation, which could potentially be exploited therapeutically in the context of obesity-associated inflammation in adipose tissue. Here, we review recent advances in our knowledge about the ability of nesfatin-1 to control inflammation by regulating NFκB signaling, which likely attenuates pro-inflammatory cytokine production and inhibits apoptosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.appet.2024.107669DOI Listing

Publication Analysis

Top Keywords

nesfatin-1 regulator
4
inflammation
4
regulator inflammation
4
inflammation implications
4
implications obesity
4
obesity metabolic
4
metabolic syndrome
4
syndrome nesfatin-1
4
nesfatin-1 derived
4
derived nucleobindin
4

Similar Publications

Nesfatin-1 is a crucial regulator of energy homeostasis in mammals and fishes, however, its metabolic role remains completely unexplored in amphibians, reptiles, and birds. Therefore, present study elucidates role of nesfatin-1 in glucose homeostasis in wall lizard wherein fasting stimulated hepatic nucb2/nesfatin-1, glycogen phosphorylase (glyp), phosphoenolpyruvate carboxykinase (pepck), and fructose 1,6-bisphosphatase (fbp), while feeding upregulated pancreatic nucb2/nesfatin-1 and insulin, suggesting towards tissue-specific dual role of nesfatin-1 in glucoregulation. The glycogenolytic/gluconeogenic role of nesfatin-1 was further confirmed by an increase in media glucose levels along with heightened hepatic pepck and fbp expression and concomitant decline in liver glycogen content in nesfatin-1-treated liver of wall lizard.

View Article and Find Full Text PDF

New aspect on the regulation of in vitro oocyte maturation: role of the obesity, neuropeptides and adipokines.

J Assist Reprod Genet

December 2024

Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, 30-387, Krakow, Poland.

Oocyte quality determinants and nuclear and cytoplasmic maturation establish essential processes for fertilization and further development of the conceptus. Moreover, female fertility is strongly dependent on the metabolic status of the organism. Numerous sources indicate that obesity impairs ovarian function including oocyte physiology by inhibiting nuclear maturation, stimulating lipotoxicity and inflammation, enabling cumulus cells apoptosis, promoting reactive oxygen species formation and ultimately imposing pathogenic effects on mitochondria leading to infertility.

View Article and Find Full Text PDF

Background: Obesity has a significant impact on asthma incidence and control. Nesfatin-1, encoded by the nucleobindin-2 (NUCB2) gene, regulates energy balance. This study aimed to evaluate NUCB2 gene polymorphism (rs757081 C > G) and its association with serum levels of nesfatin-1 and inflammatory cytokines in obese and non-obese patients with asthma.

View Article and Find Full Text PDF

Communication of gut hormones with the central nervous system is important to regulate systemic glucose homeostasis, but the precise underlying mechanism involved remain little understood. Nesfatin-1, encoded by nucleobindin-2 (NUCB2), a potent anorexigenic peptide hormone, was found to be released from the gastrointestinal tract, but its specific function in this context remains unclear. Herein, we found that gut nesfatin-1 can sense nutrients such as glucose and lipids and subsequently decreases hepatic glucose production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!