Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Selectively reducing nitrite to gaseous nitrogen (N) with an effective and recyclable fashion stands as an attractive alternative for treating the relevant wastewater. Herein, a Pd-based nanocomposite (Pd@EDA-CMPS) was subtly assembled by encapsulating Pd(0) nanoparticles into a porous polystyrene carrier, which was aforehand functionalized with ethylenediamine (EDA) as the endogenous electron donator. Systematical macroscopic experiments confirm that the pre-grafted EDA groups can substantially stimulate the catalytic activity of the laden Pd(0) nanoparticles with high removal efficiency and N selectivity of Pd@EDA-CMPS toward nitrite; specifically, high N selectivity (86%) was achieved by Pd@EDA-CMPS with an excellent anti-interference ability against competing anion and a broad pH-range applicability (4-11), whereas no N production was detected for its counterparts (CMPS, EDA-CMPS, and Pd@CMPS). Spectroscopic analyses reveal that the grafted EDA groups played a decisive role in the formation of H-loaded Pd(0) nanoparticles inside the porous substrate, which joint with the unique pH-buffering ability of EDA drove the reaction to the production of nitrogen (N) rather than ammonia (NH). The exhausted Pd@EDA-CMPS can be promisingly regenerated by NaOH (eluting) and NaBH (restoring) solution without obvious loss in treatment capacity and N selectivity. This work provides a feasible strategy for catalytically reducing nitrite into N without the provision of exogenous reductor such as hydrogen.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.176126 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!