Solid materials that deviate from the harmonic crystal paradigm exhibit characteristic anomalies in the specific heat and vibrational density of states (VDOS) with respect to Debye's theory predictions. The boson peak (BP), a low-frequency excess in the VDOS over Debye lawg(ω)∝ω2, is certainly the most famous among them; nevertheless, its origin is still subject of fierce debate. Recent simulation works provided strong evidence that localized one-dimensional string-like excitations (stringlets) might be the microscopic origin of the BP. In this work, we study the dynamics of acoustic phonons interacting with a bath of vibrating 1D stringlets with exponentially distributed size, as observed in simulations. We show that stringlets strongly renormalize the phonon propagator and naturally induce a BP anomaly in the VDOS, corresponding to the emergence of a dispersionless BP flat mode. Additionally, phonon-stringlet interactions produce a strong enhancement of sound attenuation and a dip in the speed of sound near the BP frequency, consistent with experimental and simulation data. The qualitative trends of the BP frequency and intensity are predicted within the model and shown to be in good agreement with previous observations. In summary, our results substantiate with a simple theoretical model the recent simulation results by Hu and Tanaka claiming the origin of the BP from stringlet dynamics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-648X/ad789c | DOI Listing |
Materials (Basel)
December 2024
Department of Materials Science, University of Tsukuba, Tsukuba 305-8573, Ibaraki, Japan.
Amber is a fragile (in Angell's classification) natural glass that has performed maturation processes over geological time. The terahertz dynamics of Baltic amber that was about 40 million years old were studied by terahertz time-domain spectroscopy (THz-TDS) in the frequency range of 0.2 and 6.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, USA.
Phys Rev Lett
November 2024
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
Boson peaks are observed in glassy materials due to atom, spin, and strain disordered states that provide additional vibration modes at low temperatures. However, Boson peaks have not been observed in pure dipole disordered systems without structural disorder. Here, we report the observation of a Boson-peak-like hump in specific heat near 7 K in organic-inorganic hybrid crystal MA_{4}InCl_{7}(MA=CH_{3}NH_{3}).
View Article and Find Full Text PDFPhys Rev Lett
September 2024
Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany.
We show that the existence of clouds of ultralight particles surrounding black holes during their cosmological history as members of a binary system can leave a measurable imprint on the distribution of masses and orbital eccentricities observable with future gravitational-wave detectors. Notably, we find that for nonprecessing binaries with chirp masses M≲10M_{⊙}, formed exclusively in isolation, larger-than-expected values of the eccentricity, i.e.
View Article and Find Full Text PDFJ Phys Condens Matter
September 2024
Department of Chemistry, Aarhus University, Langelandsgade 140, Aarhus, 8000, DENMARK.
The Boson peak is a universal phenomenon in amorphous solids. It can be observed as an anomalous contribution to the low-temperature heat capacity over the Debye model. Amorphous phase-change materials (PCMs) such as Ge-Sb-Te are a family of poor glass formers with fast crystallization kinetics, being of interest for phase-change memory applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!