A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

MINN: Learning the Dynamics of Differential-Algebraic Equations and Application to Battery Modeling. | LitMetric

The concept of integrating physics-based and data-driven approaches has become popular for modeling sustainable energy systems. However, the existing literature mainly focuses on the data-driven surrogates generated to replace physics-based models. These models often trade accuracy for speed but lack the generalizability, adaptability, and interpretability inherent in physics-based models, which are often indispensable in modeling real-world dynamic systems for optimization and control purposes. We propose a novel machine learning architecture, termed model-integrated neural networks (MINN), that can learn the physics-based dynamics of general autonomous or non-autonomous systems consisting of partial differential-algebraic equations (PDAEs). The obtained architecture systematically solves an unsettled research problem in control-oriented modeling, i.e., how to obtain optimally simplified models that are physically insightful, numerically accurate, and computationally tractable simultaneously. We apply the proposed neural network architecture to model the electrochemical dynamics of lithium-ion batteries and show that MINN is extremely data-efficient to train while being sufficiently generalizable to previously unseen input data, owing to its underlying physical invariants. The MINN battery model has an accuracy comparable to the first principle-based model in predicting both the system outputs and any locally distributed electrochemical behaviors but achieves two orders of magnitude reduction in the solution time.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TPAMI.2024.3456475DOI Listing

Publication Analysis

Top Keywords

differential-algebraic equations
8
physics-based models
8
minn
4
minn learning
4
learning dynamics
4
dynamics differential-algebraic
4
equations application
4
application battery
4
modeling
4
battery modeling
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!