A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Interface Engineering by Unsubstituted Pristine Nickel Phthalocyanine as Hole Transport Material for Efficient and Stable Perovskite Solar Cells. | LitMetric

Interface Engineering by Unsubstituted Pristine Nickel Phthalocyanine as Hole Transport Material for Efficient and Stable Perovskite Solar Cells.

ACS Appl Mater Interfaces

School of Physics and Engineering, ITMO University, Kronverkskiy pr. 49, St. Petersburg 197101, Russia.

Published: September 2024

Lead halide perovskite solar cells (PSCs) have been rapidly developed in the past decade. With the development of a PSC, interface engineering plays an increasingly important role in maximizing device performance and long-term stability. We report a simple and effective interface engineering method for achieving improvement of PSCs up to 20% by employing unsubstituted pristine nickel phthalocyanine (NiPc). Thermal annealing of NiPc improves the interface between NiPc and perovskite because of the incorporation of NiPc molecules into the perovskite grain boundaries, which creates improvements in hole extraction from the perovskite absorber layer, as evidenced by time-resolved photoluminescence measurements. This significantly improves the charge transfer and collection efficiency, which are closely related to the improvement of the interface between perovskite and NiPc.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c11544DOI Listing

Publication Analysis

Top Keywords

interface engineering
12
unsubstituted pristine
8
pristine nickel
8
nickel phthalocyanine
8
perovskite solar
8
solar cells
8
perovskite
6
interface
5
nipc
5
engineering unsubstituted
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!