Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Lead halide perovskite solar cells (PSCs) have been rapidly developed in the past decade. With the development of a PSC, interface engineering plays an increasingly important role in maximizing device performance and long-term stability. We report a simple and effective interface engineering method for achieving improvement of PSCs up to 20% by employing unsubstituted pristine nickel phthalocyanine (NiPc). Thermal annealing of NiPc improves the interface between NiPc and perovskite because of the incorporation of NiPc molecules into the perovskite grain boundaries, which creates improvements in hole extraction from the perovskite absorber layer, as evidenced by time-resolved photoluminescence measurements. This significantly improves the charge transfer and collection efficiency, which are closely related to the improvement of the interface between perovskite and NiPc.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c11544 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!