Gγ-protein GS3 Function in Tight Genetic Relation with OsmiR396/GS2 to Regulate Grain Size in Rice.

Rice (N Y)

Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences Shanghai, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.

Published: September 2024

Manipulating grain size demonstrates great potential for yield promotion in cereals since it is tightly associated with grain weight. Several pathways modulating grain size have been elaborated in rice, but possible crosstalk between the ingredients is rarely studied. OsmiR396 negatively regulates grain size through targeting OsGRF4 (GS2) and OsGRF8, and proves to be multi-functioning. Here we showed that expression of GS3 gene, a Gγ-protein encoding gene, that negatively regulates grain size, was greatly down-regulated in the young embryos of MIM396, GRF8OE and GS2OE plants, indicating possible regulation of GS3 gene by OsmiR396/GRF module. Meanwhile, multiple biochemical assays proved possible transcriptional regulation of OsGRF4 and OsGRF8 proteins on GS3 gene. Further genetic relation analysis revealed tight genetic association between not only OsmiR396 and GS3 gene, but also GS2 and GS3 gene. Moreover, we revealed possible regulation of GS2 on four other grain size-regulating G protein encoding genes. Thus, the OsmiR396 pathway and the G protein pathway cross talks to regulate grain size. Therefore, we established a bridge linking the miRNA-transcription factors pathway and the G-protein signaling pathway that regulates grain size in rice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11384671PMC
http://dx.doi.org/10.1186/s12284-024-00736-6DOI Listing

Publication Analysis

Top Keywords

grain size
28
gs3 gene
20
regulates grain
12
grain
9
tight genetic
8
genetic relation
8
regulate grain
8
size rice
8
negatively regulates
8
size
7

Similar Publications

A Study on the Preparation and Performance of Ultrafine Powder Made of Industrial Hemp Degumming Residue.

Polymers (Basel)

December 2024

School of Textile Science and Engineering, Wuhan Textile University, No. 1 Sunshine Avenue, Jiangxia District, Wuhan 430200, China.

Industrial hemp, one of the most widely available and extensively produced varieties, generates a substantial amount of waste in the form of hemp cellulose. This study uses a recycling method combining crushing and acid treatment to convert leftover hemp fiber into ultrafine powder. A scanning electron microscope (SEM), an atomic force microscope (AFM), Fourier transform infra-red spectroscopy (FTIR), and X-ray diffraction (XRD) were used to examine the morphology of acid-treated hemp fiber heated to 200 °C and crushed into powder.

View Article and Find Full Text PDF

, an / Family Gene, Involved in the Regulation of Seed-Specific Traits in Rice.

Plants (Basel)

December 2024

Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China.

The Aux/IAA family proteins, key components of the auxin signaling pathway, are plant-specific transcription factors with important roles in regulating a wide range of plant growth and developmental events. The family genes have been extensively studied in Arabidopsis. However, most of the family genes in rice have not been functionally studied.

View Article and Find Full Text PDF

To elucidate the morphological diversity and genetic characteristics of the pollen of species, this study utilized a total of 46 samples encompassing six species and one variety of . Scanning electron microscopy (SEM) was employed to examine the morphological traits of the pollen and to analyze the evolutionary patterns and genetic relationships among species. The results indicate that the pollen grains of the 46 germplasm are uniformly characterized as monads, heteropolar, bilaterally symmetrical, atreme, and possess a mono-sulcus.

View Article and Find Full Text PDF

TB18 is a newly developed high-strength metastable β-titanium alloy, commonly used in aerospace structural materials, which demands high mechanical performance. By altering the alloy's microstructure, heat treatment can affect its mechanical characteristics. The alloy was solution treated for one to four hours at 870 °C in order to examine the impact of solution treatment duration.

View Article and Find Full Text PDF

Annealing Effect on Linear and Ultrafast Nonlinear Optical Properties of BiTe Thin Films.

Materials (Basel)

December 2024

Department of Optical Science and Engineering, Shanghai Ultra-Precision Optical Manufacturing Engineering Center, Fudan University, Shanghai 200433, China.

In recent years, the fabrication of materials with large nonlinear optical coefficients and the investigation of methods to enhance nonlinear optical performance have been in the spotlight. Herein, the bismuth telluride (BiTe) thin films were prepared by radio-frequency magnetron sputtering and annealed in vacuum at various temperatures. The structural and optical properties were characterized and analyzed using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, spectroscopic ellipsometry, and UV/VIS/NIR spectrophotometry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!