Gγ-protein GS3 Function in Tight Genetic Relation with OsmiR396/GS2 to Regulate Grain Size in Rice.

Rice (N Y)

Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences Shanghai, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.

Published: September 2024

Manipulating grain size demonstrates great potential for yield promotion in cereals since it is tightly associated with grain weight. Several pathways modulating grain size have been elaborated in rice, but possible crosstalk between the ingredients is rarely studied. OsmiR396 negatively regulates grain size through targeting OsGRF4 (GS2) and OsGRF8, and proves to be multi-functioning. Here we showed that expression of GS3 gene, a Gγ-protein encoding gene, that negatively regulates grain size, was greatly down-regulated in the young embryos of MIM396, GRF8OE and GS2OE plants, indicating possible regulation of GS3 gene by OsmiR396/GRF module. Meanwhile, multiple biochemical assays proved possible transcriptional regulation of OsGRF4 and OsGRF8 proteins on GS3 gene. Further genetic relation analysis revealed tight genetic association between not only OsmiR396 and GS3 gene, but also GS2 and GS3 gene. Moreover, we revealed possible regulation of GS2 on four other grain size-regulating G protein encoding genes. Thus, the OsmiR396 pathway and the G protein pathway cross talks to regulate grain size. Therefore, we established a bridge linking the miRNA-transcription factors pathway and the G-protein signaling pathway that regulates grain size in rice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11384671PMC
http://dx.doi.org/10.1186/s12284-024-00736-6DOI Listing

Publication Analysis

Top Keywords

grain size
28
gs3 gene
20
regulates grain
12
grain
9
tight genetic
8
genetic relation
8
regulate grain
8
size rice
8
negatively regulates
8
size
7

Similar Publications

Ductilization of 2.6-GPa alloys via short-range ordered interfaces and supranano precipitates.

Science

January 2025

Center for Advancing Materials Performance from the Nanoscale (CAMP-Nano), Hysitron Applied Research Center in China (HARCC) and Center for Alloy Innovation and Design (CAID), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, China.

Higher strength and higher ductility are desirable for structural materials. However, ultrastrong alloys inevitably show decreased strain-hardening capacity, limiting their uniform elongation. We present a supranano (<10 nanometers) and short-range ordering design for grain interiors and grain boundary regions, respectively, in fine-grained alloys based on vanadium, cobalt, and nickel, with additions of tungsten, copper, aluminum, and boron.

View Article and Find Full Text PDF

Enhanced Mechanical Properties in Bulk Nanograined Ni with High-Density Fivefold Twins.

Small

January 2025

Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China.

Fivefold twins are extensively present in nanoparticles and nanowires, enhancing their performance in physical, chemical, and mechanical properties. However, a deep insight into the correlation between mechanical properties and fivefold twins in bulk nanograined materials is lacking due to synthesis difficulties. Here, a bulk fivefold-twinned nanograined Ni is synthesized via electrodeposition.

View Article and Find Full Text PDF

Engineering 0.8BiFeO-0.2BaTiO multiferroics with improved dielectric and magnetic properties samarium doping.

RSC Adv

January 2025

IMMM, Institut des Molécules et Matériaux du Mans Bd Charles Nicolle 72000 Le Mans France.

Samarium (Sm) modification is emerging as a powerful strategy to manipulate the electrical response of 0.8BiFeO-0.2BaTiO (BFBT) multiferroic ceramics.

View Article and Find Full Text PDF

The black bream () is an economically important species widely distributed in China, with its geographic populations potentially having undergone differentiations and local adaptations. In this study, we presented a chromosome-level genome assembly of this species and investigated genetic differentiations of its populations that are allopatric (the northern one) and sympatric (the Poyang Lake) to its kin species, the blunt-snout bream (), using whole genome resequencing analysis. The results showed that the genome size of black bream was 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!