Background: Mitochondria are known to be involved in mediating the calorigenic effects of thyroid hormones. With an abundance of these hormones, alterations in energy metabolism and cellular respiration take place, leading to the development of cardiac hypertrophy. Vitamin D has recently gained attention due to its involvement in the regulation of mitochondrial function, demonstrating promising potential in preserving the integrity and functionality of the mitochondrial network. The present study aimed to investigate the therapeutic potential of Vitamin D on cardiac hypertrophy induced by hyperthyroidism, with a focus on the contributions of mitophagy and apoptosis as possible underlying molecular mechanisms.

Methods And Results: The rats were divided into three groups: control; hyperthyroid; hyperthyroid + Vitamin D. Hyperthyroidism was induced by Levothyroxine administration for four weeks. Serum thyroid hormones levels, myocardial damage markers, cardiac hypertrophy indices, and histological examination were assessed. The assessment of Malondialdehyde (MDA) levels and the expression of the related genes were conducted using heart tissue samples. Vitamin D pretreatment exhibited a significant improvement in the hyperthyroidism-induced decline in markers indicative of myocardial damage, oxidative stress, and indices of cardiac hypertrophy. Vitamin D pretreatment also improved the downregulation observed in myocardial expression levels of genes involved in the regulation of mitophagy and apoptosis, including PTEN putative kinase 1 (PINK1), Mitofusin-2 (MFN2), Dynamin-related Protein 1 (DRP1), and B cell lymphoma-2 (Bcl-2), induced by hyperthyroidism.

Conclusions: These results suggest that supplementation with Vitamin D could be advantageous in preventing the progression of cardiac hypertrophy and myocardial damage.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11033-024-09897-5DOI Listing

Publication Analysis

Top Keywords

cardiac hypertrophy
24
mitophagy apoptosis
12
myocardial damage
12
vitamin cardiac
8
thyroid hormones
8
hypertrophy vitamin
8
vitamin pretreatment
8
cardiac
6
hypertrophy
6
vitamin
5

Similar Publications

Dietary sulfur amino acid restriction (SAAR) elicits various health benefits, some mediated by fibroblast growth factor 21 (FGF21). However, research on SAAR's effects on the heart is limited and presents mixed findings. This study aimed to evaluate SAAR-induced molecular alterations associated with cardiac remodeling and their dependence on FGF21.

View Article and Find Full Text PDF

Barth Syndrome (BTHS) is an early onset, lethal X-linked disorder caused by a mutation in tafazzin (TAFAZZIN), a mitochondrial acyltransferase that remodels monolysocardiolipin (MLCL) to mature cardiolipin (CL) and is essential for normal mitochondrial, cardiac, and skeletal muscle function. Current gene therapies in preclinical development require high levels of transduction. We tested whether TAFAZZIN gene therapy could be enhanced with the addition of a cell-penetrating peptide, penetratin (Antp).

View Article and Find Full Text PDF

The cardiac myosin binding protein-C (cMyBP-C) regulates cross-bridge formation and controls the duration of systole and diastole at the whole heart level. As known, mutations in cMyBP-C increase the cross-bridge number and rate of their cycling, hypercontractility, and myocardial hypertrophy. We investigated the effects of the mutations D75N and P161S of cMyBP-C related to hypertrophic cardiomyopathy on the mechanism of force generation in isolated slow skeletal muscle fibers.

View Article and Find Full Text PDF

: Resistance exercises (REs) are a type of physical activity that individuals from many age groups have been doing recreationally, both as amateurs and professionally, in their daily lives in recent years. It is crucial to understand the effects of such sports on cardiac morphology in order to maximize the benefit of training and to tailor the training content accordingly. The aim of this study was to investigate the relationship between training experience (TE) and left ventricular (LV) systolic and diastolic parameters and left atrial (LA) mechanical function in healthy subjects who regularly performed RE for different durations.

View Article and Find Full Text PDF

Acute myocardial infarction (AMI) is a critical medical condition that requires immediate attention to minimise heart damage and improve survival rates. Early identification and prompt treatment are essential to save the patient's life. Currently, the treatment strategy focuses on restoring blood flow to the myocardium as quickly as possible.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!