Bloodstains are crucial pieces of physical evidences found at violent crime scenes, providing valuable information for reconstructing forensic cases. However, there is limited data on how bloodstain lipidomes change over time after deposition. Hence, we deployed a high-throughput high-performance liquid chromatography-mass spectrometry (HPLC-MS) approach to construct lipidomic atlases of bloodstains, whole blood, plasma, and blood cells from 15 healthy adults. A time-course analysis was also performed on bloodstains deposited for up to 6 months at room temperature (~ 25°C). The molecular levels of 60 out of 400 detected lipid species differed dramatically between bloodstain and whole blood samples, with major disturbances observed in membrane glycerophospholipids. More than half of these lipids were prevalent in the cellular and plasmic fractions; approximately 27% and 10% of the identified lipids were uniquely derived from blood cells and plasma, respectively. Furthermore, a subset of 65 temporally dynamic lipid species arose across the 6-month room-temperature deposition period, with decreased triacylglycerols (TAGs) and increased lysophosphatidylcholines (LPCs) as representatives, accounting for approximately 8% of the total investigated lipids. The instability of lipids increased linearly with time, with the most variability observed in the first 10 days. This study sheds light on the impact of air-drying bloodstains on blood components at room temperature and provides a list of potential bloodstain lipid markers for determining the age of bloodstains.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00414-024-03330-z | DOI Listing |
Forensic Sci Int
December 2024
Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China. Electronic address:
Identification of body fluid stain at crime scene is one of the important tasks of forensic evidence analysis. Currently, body fluid-specific CpGs detected by DNA methylation microarray screening, have been widely studied for forensic body fluid identification. However, some CpGs have limited ability to distinguish certain body fluid types.
View Article and Find Full Text PDFAnn Pharm Fr
December 2024
Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 30200, Bagnols-sur-Cèze, France.
Tradition has it that the politician Robespierre, a famous tribune of the French Revolution, was lying, wounded in the face by a bullet from a firearm, on an 18th century desk, and left a trace of blood there, before being guillotined the next day (1794). This piece of furniture is now kept in the National Archives (Paris, France). A paleo-proteomic study was carried out on several brown stains on the leather of the desk, which confirmed the human blood nature of the sample, but also identified the protein signature of different craniofacial organs.
View Article and Find Full Text PDFAn expert case is presented in which a man was found dead in his apartment, on the bed. Upon examination of the crime scene, the deceased was found to have a contused wound of the frontoparietal region on the left side. The apartment contained a large number of bloodstains, including patterns characteristic of arterial spurt.
View Article and Find Full Text PDFMicrobiol Spectr
December 2024
Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio, USA.
Automated continuous monitoring blood culture instruments identify metabolism byproducts and flag blood culture bottles as "positive." A Gram stain is used to visualize and characterize the microbial growth in the broth and initiate additional testing. When no organisms are seen (NOS) on Gram stain, in our laboratory, bottles are reevaluated with a Wayson stain, a rapid one-step stain that provides contrast between organisms and the background, especially in Gram-negative organisms.
View Article and Find Full Text PDFForensic Sci Int
December 2024
Department of Science, Alliance University, Bengaluru 562106, India.
The accurate detection, identification, and analysis of biofluids at crime scenes play a critical role in forensic investigations. Various biofluids, such as blood, semen, vaginal fluid, menstrual blood, urine, and saliva, can be crucial evidence. In a murder case involving a knife attack, for instance, bloodstains from both the victim and perpetrator might be present.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!