Endophytic fungi, as plant symbionts, produce an elaborate array of enzymes for efficient disintegration of lignocellulosic biomass into constituent monomeric sugars, making them novel source of lignocellulolytic CAZymes with immense potential in future biorefineries. The present study reports lignocellulolytic enzymes production potential of an endophytic halotolerant Penicillium oxalicum strain isolated from Citrus limon, under submerged and solid-state fermentation (SmF & SSF, respectively), in the presence and absence of salt (1 M NaCl). The comparative QTOF-LC/MS-based exoproteome analysis of the culture extracts unveiled differential expression of CAZymes, with the higher abundance of GH6 and GH7 family cellobiohydrolase in the presence of 1 M salt. The strain improvement program, employing cyclic mutagenesis and diploidization, was utilized to develop hyper-cellulase producing mutant strains of P. oxalicum. The enzyme production of the developed strain (POx-M35) was further enhanced through statistical optimization of the culture conditions utilizing glucose mix disaccharides (GMDs) as an inducer. This optimization process resulted in the lignocellulolytic cocktail that contained high titers (U/mL) of endoglucanase (EG) (146.16), cellobiohydrolase (CBHI) (6.99), β-glucosidase (β-G) (26.21), xylanase (336.05) and FPase (2.02 U/mL), which were 5.47-, 5.54-, 8.55-, 4.96-, and 4.39-fold higher when compared to the enzyme titers obtained in wild HP1, respectively. Furthermore, the lignocellulolytic cocktails designed by blending secretome produced by mutant POx-M35 with xylanases (GH10 and GH11) derived from Malbranchea cinnamomea resulted in efficient hydrolysis of unwashed acid pretreated (UWAP) rice straw slurry and mild alkali deacetylated (MAD) rice straw. This study underscores the potential of bioprospecting novel fungus and developing an improved strain for optimized production and constitution of lignocellulolytic cocktails that can be an important determinant in advancing biomass conversion technologies.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00449-024-03085-2DOI Listing

Publication Analysis

Top Keywords

rice straw
12
penicillium oxalicum
8
source lignocellulolytic
8
lignocellulolytic enzymes
8
lignocellulolytic cocktails
8
lignocellulolytic
6
developing endophytic
4
endophytic penicillium
4
oxalicum source
4
enzymes enhanced
4

Similar Publications

Changes in methanogenic performance and microbial community during gradual transition from co-digestion with food waste to mono-digestion of rice straw.

Bioresour Technol

January 2025

Department of Frontier Science for Advanced Environment, Graduate School of Environmental Sciences, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan. Electronic address:

This study investigated the performance and phase-specific characteristics of mesophilic co-digestion of food waste (FW) with rice straw (RS) at different RS proportions (40 %, 60 %, and 80 %), as well as mono-digestion of RS. The system achieved optimal performance at 40 % RS content, with a methane yield of 383.8 mL/g-VS and cellulose removal efficiency exceeding 75 %.

View Article and Find Full Text PDF

Agricultural amendments enhanced the redox cycling of iron species and hydroxyl radical formation during redox fluctuation of paddy soil.

J Hazard Mater

January 2025

State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, PR China. Electronic address:

Hydroxyl radical (OH) plays a critical role in accelerating organic contaminant attenuation during water-table decline in paddy soil, but the impacts of widely applied agricultural amendments (e.g., organic manure, rice straw, and biochar) on these processes have been rarely explored.

View Article and Find Full Text PDF

The present study was designed to highlight the ameliorative role of iron nanoparticles (FeNPs) against drought stress in spinach (Spinacia oleracea L.) plants. A pot experiment was performed in two-way completely randomize design with three replicates.

View Article and Find Full Text PDF

Inclusion of Black Soldier Fly Larval Oil in Ruminant Diets Influences Feed Consumption, Nutritional Digestibility, Ruminal Characteristics, and Methane Estimation in Thai-Indigenous Steers.

J Anim Physiol Anim Nutr (Berl)

January 2025

Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand.

The objective of this study was to examine the impact of black soldier fly larval oil (BSFO) on feed consumption, nutritional digestibility, ruminal characteristics and methane (CH) estimation in Thai-indigenous steers. Four male Thai native steers (Bos indicus) weighing 383 ± 9.0 kg were used in this investigation.

View Article and Find Full Text PDF

This study explores the potential of using underutilized materials from agricultural and forestry systems, such as rice husk, wheat straw, and wood strands, in developing corrugated core sandwich panels as a structural building material. By leveraging the unique properties of these biobased materials within a corrugated geometry, the research presents a novel approach to enhancing the structural performance of such underutilized biobased materials. These biobased materials were used in different lengths to consider the manufacturing feasibility of corrugated panels and the effect of fiber length on their structural performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!