https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=39248681&retmode=xml&tool=pubfacts&email=info@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term=mof-based+single-atom&datetype=edat&usehistory=y&retmax=5&tool=pubfacts&email=info@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&WebEnv=MCID_679579ee6eecb31b580e1414&query_key=1&retmode=xml&retmax=5&tool=pubfacts&email=info@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908
Harnessing solar energy through photocatalysis has excellent potential for powering sustainable chemical production, supporting the United Nations' environmental goals. Single-atoms (SAs) dispersed on catalyst surfaces are gaining attention for their highly active and durable nature. Metal-organic frameworks (MOFs) can provide enough reactive sites to sustain selectivity and durability over time because of their tunable channels and functional groups. Owing to their organized structures, MOFs are ideal platforms for securing individual atoms and promoting solar-driven reactions. Few reviews have, however, reflected the possibility of combining MOFs and SAs to produce potent photocatalysts that may produce clean fuels and valuable chemicals. This review provides a general overview of methods for combining MOFs and SAs to generate photocatalysts. The challenges associated with these MOF-based single-atom systems are also critically examined. Their future development is discussed as continued refinement helps to more fully leverage their advantages for boosting photocatalytic performances - turning sunlight into chemicals in a manner that supports sustainable development. Insights gained here could illuminate pathways toward realizing the profound potential of MOF-based single-atom photocatalysts to empower production driven by renewable solar energy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4cc03479a | DOI Listing |
J Am Chem Soc
January 2025
Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
Enzymes, composed of earth-abundant elements, outperform conventional heterogeneous photocatalysts in hydrogen production due to the dual-site cooperation between adjacent active metal sites and proton-transferring ligands. However, the realization of such dual-site cooperation in heterogeneous catalytic systems is hindered by the challenges in the precise construction of cooperative active sites. In this study, we present the design of a structurally tuned metal-organic framework (MOF) photocatalyst that incorporates cooperative Brønsted acid-single atom catalytic sites.
View Article and Find Full Text PDFSmall
December 2024
Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL, 60607, USA.
Electrochemical CO reduction reaction (CO-RR) in non-aqueous electrolytes offers significant advantages over aqueous systems, as it boosts CO solubility and limits the formation of HCO and CO anions. Metal-organic frameworks (MOFs) in non-aqueous CO-RR makes an attractive system for CO capture and conversion. However, the predominantly organic composition of MOFs limits their electrical conductivity and stability in electrocatalysis, where they suffer from electrolytic decomposition.
View Article and Find Full Text PDFChem Commun (Camb)
October 2024
School of Chemical Engineering, University of Adelaide, Adelaide, SA 5005, Australia.
Harnessing solar energy through photocatalysis has excellent potential for powering sustainable chemical production, supporting the United Nations' environmental goals. Single-atoms (SAs) dispersed on catalyst surfaces are gaining attention for their highly active and durable nature. Metal-organic frameworks (MOFs) can provide enough reactive sites to sustain selectivity and durability over time because of their tunable channels and functional groups.
View Article and Find Full Text PDFChemosphere
September 2024
Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung City, 413310, Taiwan. Electronic address:
Due to the increased human activities in burning of fossil fuels and deforestation, the CO level in the atmosphere gets increased up to 415 ppm; although it is an essential component for plant growth, an increased level of CO in the atmosphere leads to global warming and catastrophic climate change. Various conventional methods are used to capture and utilize CO, among that a feasible and eco-friendly technique for creating value-added products is the CORR. Photochemical, electrochemical, thermochemical, and biochemical approaches can be used to decrease the level of CO in the atmosphere.
View Article and Find Full Text PDFJ Am Chem Soc
July 2024
Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
Inspired by enzymatic catalysis, it is crucial to construct hydrogen-bonding-rich microenvironment around catalytic sites; unfortunately, its precise construction and understanding how the distance between such microenvironment and catalytic sites affects the catalysis remain significantly challenging. In this work, a series of metal-organic framework (MOF)-based single-atom Ru catalysts, namely, Ru/UiO-67-X (X = -H, --(NH), --(NH)), have been synthesized, where the distance between the hydrogen-bonding microenvironment and Ru sites is modulated by altering the location of amino groups. The -NH group can form hydrogen bonds with HO, constituting a unique microenvironment that causes an increased water concentration around the Ru sites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!