Magnetic Hydrogel Microbots for Efficient Pollutant Decontamination and Self-Catalyzed Regeneration in Continuous Flow Systems.

Small

Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore.

Published: November 2024

The efficient removal of organic pollutants from water is crucial for protecting human health and the ecosystem. While adsorbent-based approaches offer advantages over traditional chemical and thermal methods, they still suffer from slow adsorption kinetics, high energy demand, and limited material lifespan. Herein, an efficient decontamination platform is introduced, using magnetic hydrogel microbots (MHMs) made from picolitre-sized hydrogel droplets coated with multifunctional magnetic nanoparticles. This approach includes 1) dividing a droplet into smaller microbots to enhance their interaction with sample solution and 2) dynamically spinning these MHMs to generate hydrodynamic flows that actively draw pollutants toward the embedded hydrogel for capture. The MHMs show high decontamination effectiveness in both bulk and continuous flow setups, achieving ≈95% removal efficiency within 3 min. Further integrating MHMs with a non-pressurized fluidic platform enables energy-efficient continuous flow decontamination, removing ≥95% total organic carbon from a complex pollutant mixture at a flow rate surpassing other recent designs. Additionally, the MHMs facilitate self-catalyzed regeneration using an environmentally friendly HO precursor, allowing for long-term and repeated usage. By enabling the unique divide-and-arrest decontamination of toxic pollutants, the multifunctional design holds tremendous promise for on-site wastewater treatment to ensure safe water access for everyone, even in resource-limited environments.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202405699DOI Listing

Publication Analysis

Top Keywords

continuous flow
12
magnetic hydrogel
8
hydrogel microbots
8
self-catalyzed regeneration
8
decontamination
5
mhms
5
microbots efficient
4
efficient pollutant
4
pollutant decontamination
4
decontamination self-catalyzed
4

Similar Publications

Simulation of fluid flow with Cuprophan and AN69ST membranes in the dialyzer during hemodialysis.

Biomed Phys Eng Express

January 2025

Ingeniería y Tecnología, Universidad Nacional Autonoma de Mexico Facultad de Estudios Superiores Cuautitlan, Av. 1o de Mayo S/N, Santa María las Torres, Campo Uno, 54740 Cuautitlán Izcalli, Edo. de Méx., Cuautitlan Izcalli, Estado de México, 54740, MEXICO.

Hemodialysis is a crucial procedure for removing toxins and waste from the body when kidneys fail to perform this function effectively. This study addresses the need to improve the efficiency and biocompatibility of membranes used in dialyzers. We simulate fluid flow through two types of membranes, Cuprophan (cellulosic) and AN69ST (synthetic), to understand the complex mechanisms involved and quantify key variables such as pressure, concentration, and flow.

View Article and Find Full Text PDF

The imperative for developing robust tools to detect, analyze, and characterize viruses has become increasingly evident as they continue to threaten human health. In this review, we focus on recent advancements in studying human viruses with flow virometry (FV), an emerging technique that has gained considerable momentum over the past 5 years. These advancements include the application of FV in viral surface phenotyping, viral protein functionality, virus sorting, vaccine development, and diagnostics.

View Article and Find Full Text PDF

Hand position during chest compression in infantile piglets - Do you need to encircle the chest with the 2-thumb-technique?

Resusc Plus

January 2025

Centre for the Studies of Asphyxia and Resuscitation, Neonatal Research Unit, Royal Alexandra Hospital, Edmonton, Alberta, Canada.

Background: The Pediatric Life Support Consensus on Science With Treatment Recommendations states that chest compressions (CC) be performed with the 2-thumb-encircling and if the chest can not be encircled the 2-finger-technique.

Aim: To compare the hemodynamic effects of four different compression methods during CC in a piglet model of infant asphyxia.

Methods: Nine asphyxiated infant piglets were randomized to CC with 2-thumb-encircling, 2-thumb-, 2-finger-, and one-hand-techniques for one minute at each technique.

View Article and Find Full Text PDF

An efficient Suzuki cross-coupling reaction under continuous flow conditions was developed utilizing an immobilized solid supported catalyst consisting of bimetallic nickel-palladium nanoparticles (Ni-Pd/MWCNTs). In this process, the reactants can be continuously pumped into a catalyst bed at a high flow rate of 0.6 mL/min and the temperature of 130 °C while the Suzuki products are recovered in high steady-state yields for prolonged continuous processing.

View Article and Find Full Text PDF

Recent Developments in Ventricular Assist Device Therapy.

Rev Cardiovasc Med

January 2025

Center for Preclinical Surgical & Interventional Research, The Texas Heart Institute, Houston, TX 77030, USA.

The evolution of left ventricular assist devices (LVADs) from large, pulsatile systems to compact, continuous-flow pumps has significantly improved implantation outcomes and patient mobility. Minimally invasive surgical techniques have emerged that offer reduced morbidity and enhanced recovery for LVAD recipients. Innovations in wireless power transfer technologies aim to mitigate driveline-related complications, enhancing patient safety and quality of life.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!