A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Polyfunctional and Multisensory Bio-Ionoelastomers Enabled by Covalent Adaptive Networks With Hierarchically Dynamic Bonding. | LitMetric

Developing versatile ionoelastomers, the alternatives to hydrogels and ionogels, will boost the advancement of high-performance ionotronic devices. However, meeting the requirements of bio-derivation, high toughness, high stretchability, autonomous self-healing ability, high ionic conductivity, reprocessing, and favorable recyclability in a single ionoelastomer remains a challenging endeavor. Herein, a dynamic covalent and supramolecular design, lipoic acid (LA)-based dynamic covalent ionoelastomer (DCIE), is proposed via melt building covalent adaptive networks with hierarchically dynamic bonding (CAN-HDB), wherein lithium bonds aid in the dissociation of ions and the integration of dynamic disulfide metathesis, lithium bonds, and binary hydrogen bonds enhances the mechanical performances, self-healing capability, reprocessing, and recyclability. Therefore, the trade-off among mechanical versatility, ionic conductivity, self-healing capability, reprocessing, and recyclability is successfully handled. The obtained DCIE demonstrates remarkable stretchability (1011.7%), high toughness (3877 kJ m), high ionic conductivity (3.94 × 10 S m), outstanding self-healing capability, reprocessing for 3D printing, and desirable recyclability. Significantly, the selective ion transport endows the DCIE with multisensory feature capable of generating continuous electrical signals for high-quality sensations towards temperature, humidity, and strain. Coupled with the straightforward methodology, abundant availability of LA and HPC, as well as multifunction, the DCIEs present new concept of advanced ionic conductors for developing soft ionotronics.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202406967DOI Listing

Publication Analysis

Top Keywords

ionic conductivity
12
self-healing capability
12
capability reprocessing
12
covalent adaptive
8
adaptive networks
8
networks hierarchically
8
hierarchically dynamic
8
dynamic bonding
8
high toughness
8
high ionic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!